Salmonella Overview

The Salmonella Problem

Salmonella is the most frequently reported bacterial cause of foodborne illness in the U.S. Each year, more than 1 million U.S. cases of Salmonellosis occur, causing ~400 deaths and ~20,000 hospitalizations (Scallan et al., 2011). The total cost to the U.S. economy for these illnesses, including medical costs and loss of productivity, has been estimated at $3.7 to $11.4 billion per year (Hoffmann et al., 2012, Scharff, 2012).

Eggs and poultry are well known for their role in transmitting Salmonella infections; however, all foods can harbor the organism, including beef, pork, lamb, fish, dairy products, vegetables, fruits, nuts, etc. About one-third of the Salmonella-related disease reported in the US is attributed to poultry, beef, pork, or lamb (Hsi et al., 2015). The average American has a 1 in 40 lifetime risk of acquiring Salmonella-related illness from consuming poultry, and a 1 in 100 lifetime risk from eating beef and from eating pork (Hsi et al., 2015).

Overview of the Bacteria

Salmonella is a gram-negative, rod-shaped bacteria with a talent for adapting to its environment. This ability to grow or persist in many different conditions makes it particularly problematic as a foodborne pathogen. Salmonella’s preferred habitat is the gastrointestinal tract of animals, where it often establishes a relationship that results in little or no clinical disease to its host. From there, however, the bacteria can shed in feces and easily contaminate soils, waters, and surfaces, potentially infecting other animals. Importantly, fecal shedding also leads to hide and wastewater contamination during slaughtering.

Salmonella can grow aerobically or anaerobically depending upon conditions. Although a temperature of 37°C (98.6°F) and a pH of 6.5 to 7.5 are optimal, different strains grow under many conditions, ranging from temperatures between 2°C (36°F) to 54°C (129°F) and pH values between 4.0 and 9.5 (Li et al., 2013). Salmonella can survive under harsh conditions, including persisting in frozen meat for a year or more (Muller et al., 2012).

For growth, Salmonella requires a water activity of at least 0.93. However, it can survive and persist for months at much lower water activities, as low as a_w=0.18 in one report (Kotzekidou, 1998). When Salmonella adapts to low-moisture environments, it becomes more resistant to heat, making it a serious problem in dried foods such as beef jerky and spices (Buege et al., 2006). Exposure of Salmonella to environmental stresses can result in the organism becoming more hardy and resistant to other adverse conditions. For example, sub-lethal heat exposure increases heat resistance, while growth at a low pH makes the microbe more resistant to both heat and high salt concentrations (Li et al., 2013).

The genus Salmonella is part of the family Enterobacteriaceae, which includes other well-known human pathogens such as members of the genera Shigella, Yersinia, and Escherichia (Baylis et al., 2011). Only two species of Salmonella are recognized currently (Barrow et al., 2012). Nearly all human disease attributed to Salmonella is caused by the species Salmonella enterica, although rare (and likely not foodborne) human infections with Salmonella bongori have been reported (Martí et al., 2013, Pignato et al., 1998). Six subspecies exist within Salmonella enterica (Figure 1). Most human Salmonella isolates (99% of those in the U.S.) belong to subspecies I, which is also somewhat confusingly called enterica; these strains are thus formally known as Salmonella enterica subspecies enterica (Centers for Disease Control and Prevention, 2011).

Salmonella subspecies are further categorized into serotypes (or serovars) based on two surface antigens. More than 2600 Salmonella serotypes have been identified. Figure 1 summarizes the subdivisions within the Salmonella genus.

In recent years, the most common Salmonella serotypes associated with foodborne disease in the U.S. have been Enteritidis, Typhimurium, Heidelberg, and Newport, although many other serotypes have triggered outbreaks (Gould et al., 2013). Some serotypes are associated with specific animals and thus...
with specific foods. For example, the serotype Enteritidis is often associated with eggs and poultry, while serotype Dublin infects cattle and has caused outbreaks associated with raw milk (Mateus et al., 2008). In contrast, serotype Typhimurium infects many types of animals and has been associated with a wide range of foods (Thorns, 2000). Salmonella serotypes that are adapted to their host tend to cause more severe, systemic disease in their hosts and may cause very mild or no illness in animals to which they are not adapted (Baumler et al., 1998). Conversely, Salmonella serotypes that lack host specificity tend to be less virulent (Langridge et al., 2015) and may be more likely to cause illness in young animals that lack a fully developed immune system (Baumler et al., 1998). Table 1 presents some of the host animals for common Salmonella enterica serotypes.

Human Risks and Epidemiology

Although food is its primary vehicle, a small percentage (~6%) of Salmonella infections in the U.S. are acquired in others ways, such as handling food animals, turtles, other reptiles or amphibians, chicks, and on occasion, from contact with pet foods and treats (Hoelzer et al., 2011, Scallan et al., 2011). Person-to-person transmission is also possible (Steere et al., 1975).

Salmonellosis, the gastrointestinal illness associated with non-typhoid Salmonella strains, typically occurs within 12 to 72 hours of eating a contaminated food. The number of Salmonella cells needed to cause disease may be very low in some cases (<10 cells), depending on the serotype and the type of food, with high-fat foods sometimes resulting in lower infectious doses (Li et al., 2013). Food contaminated with Salmonella generally does not smell, taste, or look any different from uncontaminated food. Once ingested, bacterial cells that survive digestion may invade intestinal cells, leading to the classic Salmonellosis symptoms of fever, nausea, abdominal cramps, vomiting, and diarrhea. While most patients recover within a week without treatment, long-term complications such as reactive arthritis may occur in susceptible populations. People taking drugs that reduce gastric acidity may be more prone to Salmonellosis, as are the very young, the elderly, and the immunocompromised, who may experience more severe illness leading to a systemic infection (Lund et al., 2011, Chen et al., 2013). There is no human vaccine for non-typhoid Salmonella.

Despite significant efforts to control Salmonella infections, rates of foodborne disease attributed to Salmonella are not declining in the U.S. (Gilliss et al., 2011). The organism continues to cause significant non-typhoidal disease throughout the world (Majowicz et al., 2010), contributing to an estimated 94 million enteric and 3.4 million invasive infections and >800,000 deaths annually (Majowicz et al., 2010, Ao et al., 2015).

Table 1. Host Animals for Common Salmonella enterica Serotypes

<table>
<thead>
<tr>
<th>Salmonella enterica Serotype</th>
<th>Host Animals</th>
<th>Disease in Humans?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enteritidis</td>
<td>Humans, poultry, wild rodents</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>Typhimurium</td>
<td>Humans, cattle, swine, horses, sheep, poultry, wild rodents</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>Newport</td>
<td>Cattle, humans</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>Gallinarum</td>
<td>Poultry</td>
<td>None or rare</td>
</tr>
<tr>
<td>Pullorum</td>
<td>Poultry</td>
<td>None or rare</td>
</tr>
<tr>
<td>Dublin</td>
<td>Cattle, swine, sheep</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>Typhi</td>
<td>Humans only</td>
<td>Typhoid fever</td>
</tr>
<tr>
<td>Paratyphi</td>
<td>Humans only</td>
<td>Typhoid fever</td>
</tr>
</tbody>
</table>

Sources: Baumler et al., 1998, Chen et al., 2013, Toth et al., 2011
Outbreaks occur when more than one person becomes ill from a common source. Approximately 130 outbreaks of foodborne Salmonellosis occur in the U.S. each year (Gould et al., 2013) with more outbreaks typically during the summer. The U.S. Center for Disease Control (CDC) tracks outbreaks related to foodborne pathogens. Table 2 lists the multistate foodborne disease outbreaks caused by *Salmonella* spp. in the U.S. during 2013.

As illustrated in Table 2, a wide variety of foods may be associated with *Salmonella* outbreaks. While poultry and red meats are responsible for some outbreaks, the contribution of fruit/nuts and vegetables to *Salmonella*-related illnesses is especially evident when examined over a longer period of time (10 years; see Figure 2).

Salmonella in Food Animals

The variety of foods contributing to the burden of *Salmonella*-related illness presents a global food safety challenge. Significant efforts at reducing *Salmonella* spp. contamination have been made across the entire food industry. However, given that many food animals are natural hosts for *Salmonella* spp., focused efforts to control *Salmonella* in food-producing animals are necessary.

Food animals can acquire *Salmonella* in many ways, including contact with another infected animal or its feces, contaminated housing, wild birds, rodents, insects such as biting flies, improperly rendered animal by-products used in feed, and contaminated water. Vertical transmission is a major concern in the poultry industry, as *Salmonella* can be transmitted to progeny (or eggs for human consumption) via internal or external contamination of eggs (European Food Safety Authority, 2009).

Many types of animals can harbor *Salmonella*, including cattle, horses, pigs, cats, dogs, rodents, domestic and wild birds, reptiles, amphibians, and fish (Hoelzer et al., 2011), often asymptptomatically, and sometimes transmitting the organism to humans or food intended for humans. For example, the serotypes Enterica and Typhimurium can cause a systemic disease with diarrhea and dehydration in newborn poultry chicks. The persistence and asymptomatic colonization of these serotypes in older birds can result in lateral transmission to other birds in the flock or to eggs. This carriage and persistence of

Table 2. U.S. Multi-state Salmonella Outbreaks in 2013

<table>
<thead>
<tr>
<th>Food</th>
<th>Serotype</th>
<th>Number of Illnesses</th>
<th>Number of Hospitalizations</th>
<th>Number of Deaths</th>
<th>States Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cucumber</td>
<td>Saintpaul</td>
<td>84</td>
<td>17</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Pistachio</td>
<td>Senftenberg</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Tahini</td>
<td>Mbandaka and Montevideo</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>Saintpaul</td>
<td>131</td>
<td>23</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>Chicken</td>
<td>Heidelberg</td>
<td>634</td>
<td>200</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Ground beef</td>
<td>Newport</td>
<td>39</td>
<td>9</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Papaya</td>
<td>Thompson</td>
<td>13</td>
<td>6</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>Virchow</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Pork</td>
<td>Adelaide</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Raw cashew cheese</td>
<td>Stanley</td>
<td>18</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Tilapia fish</td>
<td>Javiana</td>
<td>33</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: Centers for Disease Control and Prevention, 2015
being addressed by several global and domestic health organizations. Though not the sole cause of antibiotic resistance, the utilization of sub-therapeutic doses of antibiotics during food-animal production has likely contributed to the rise of antibiotic-resistant bacteria. Within the U.S., significant efforts to combat antibiotic resistance have manifested in multiple policies to eliminate the sub-therapeutic use of clinically important antibiotics in food animal production (U.S. Food and Drug Administration, 2015; U.S. Food and Drug Administration, 2012; U.S. Food and Drug Administration, 2013). Further, any utilization of antibiotics in food-animal production must occur under the supervision and direction of a veterinarian. These policies, combined with increased diligence of medical physicians when selecting and prescribing antibiotics, will help alleviate the growing threat of antibiotic-resistant bacteria.

Salmonella in Meat

Salmonella bacteria generally colonize the gastrointestinal (GI) tract of animals. Though numerous practices and preventative measures are enforced, the meat of animals can become contaminated during slaughter when hides and/or materials from the GI tract come into contact with the carcass surface. Industry policies to prevent this mode of contamination have resulted in significant reductions in carcass *Salmonella* levels. Alternative routes of contamination may include the lymph nodes (particularly in cattle) or the bones of chickens, both of which may sometimes be included in ground meat and poultry products (Arthur et al., 2008, Vieira-Pinto et al., 2005, Garrido et al., 2014, Wu et al., 2014).

Salmonella Testing in Raw Meat in the U.S.

The USDA Food Safety and Inspection Service (FSIS) plays a regulatory role in preventing the contamination of meat, poultry and processed egg products with foodborne pathogens. Following widespread changes to regulatory policy in response to the 1993 *Escherichia coli* O157:H7 outbreak, FSIS implemented mandatory performance testing for *Salmonella* in certain meat products with the 1996 Pathogen Reduction/HACCP Systems Final Rule (USDA Food Safety and Inspection Service, 1996). This Final Rule required that establishments that slaughtered or prepared certain ground meats meet *Salmonella* performance standards based on nationwide baseline rates of *Salmonella* contamination in that type of meat. The implementation of performance standards by FSIS has resulted in the adoption of various internal testing programs by many meat and poultry producers.

Although the performance standards were originally set to be equal to average rates of *Salmonella* contamination within the industry, they have been modified to reflect improved average contamination rates and to help achieve national goals related to reductions in *Salmonella*-related illnesses. The evolution of *Salmonella* performance standards since their inception in 1996 is shown in Table 3.

In 2011, FSIS discontinued *Salmonella* testing on market hogs, cows/bulls, and steers/heifers but began testing ground chicken and turkey. Soon after, FSIS proposed decreasing the acceptable performance standard for ground turkey and chicken and also will be implementing a new standard for chicken parts. In addition, FSIS announced plans to begin exploratory testing in raw pork in 2015 (USDA Food Safety and Inspection Service, 2014), suggesting that *Salmonella* performance standards for pork may be forthcoming.

There is some concern, especially among consumer groups, that the current program of FSIS testing to performance standards does not provide USDA with appropriate mechanisms or sufficient power to control *Salmonella* outbreaks that arise from meat and poultry. While the potential for this policy to change exists, the USDA does not currently consider *Salmonella* an adulterant when present in raw meat. This means that *Salmonella* can be present in raw poultry or meat and sold legally.

Salmonella Requirements for RTE Meats

In contrast to raw meats and poultry, ready-to-eat (RTE) meats contaminated with *Salmonella* spp. are considered adulterated (USDA Food Safety and Inspection Service, 2012a). As such, FSIS conducts testing for *Salmonella* in RTE products. Further, FSIS has developed regulatory requirements for *Salmonella* reduction in certain RTE meat products such as roast, cooked, or corned beef and cooked poultry products (9 CFR Parts 301, 317, 318, 320, and 381), with guidelines for their processing provided in Appendix A as well as additional guidance documents for RTE processors.

Table 3. FSIS Salmonella Performance Standards in Raw Meat and Carcasses

<table>
<thead>
<tr>
<th>Product</th>
<th>Performance Standards (% Positive for Salmonella) Since 1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground beef</td>
<td>7.5%</td>
</tr>
<tr>
<td>Young chicken carcasses</td>
<td>None</td>
</tr>
<tr>
<td>Young turkey carcasses</td>
<td>None</td>
</tr>
<tr>
<td>Ground chicken</td>
<td>None</td>
</tr>
<tr>
<td>Ground turkey</td>
<td>None</td>
</tr>
<tr>
<td>Chicken parts</td>
<td>None</td>
</tr>
<tr>
<td>Market hog</td>
<td>8.7%</td>
</tr>
<tr>
<td>Cow/bull</td>
<td>2.7%</td>
</tr>
<tr>
<td>Steer/heifer</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

While the incidence of *Salmonella* in RTE products is relatively low, contamination may occur when a product is insufficiently processed, is mixed with contaminated ingredients (i.e. spices, sauces, etc.), or acquires contamination through environmental sources (food handlers, insects, etc.).

Of particular concern are products which are mistakenly thought by consumers to be RTE, but are actually raw. Chicken Cordon Bleu and Chicken Kiev products have resulted in Salmonellosis outbreaks (USDA Food Safety and Inspection Service, 2015). Because consumers may believe such products are RTE, FSIS requires they be labeled to emphasize that the products are not precooked (USDA Food Safety and Inspection Service, 2006).

Strategies to Prevent or Minimize *Salmonella* in Meat and Poultry

Although some studies have suggested that the most common *Salmonella* serotypes found in meat products are not the most common causes of human illness (Wilhelm *et al.*, 2011), minimizing *Salmonella* in meat products remains a priority and is expected to impact public health.

Strategies to prevent or minimize *Salmonella* contamination of meat and poultry include steps to reduce carriage and transmission in food animals as well as pre- and post-harvest approaches.

Reducing Carriage and Transmission in Food Animals

Strategies to reduce the carriage and transmission of *Salmonella* among food animals are listed below.

Protect breeding stock from *Salmonella* infection. Microbiological monitoring, removal of infected animals, vaccination, and other strategies are used in an effort to prevent horizontal transmission of *Salmonella* within a herd or flock. Careful surveillance and testing were key to the dramatic reduction in *Salmonella* in pork in Denmark (Wegener *et al.*, 2003).

Prevent *Salmonella* contamination of animal feed and water. Measures to prevent *Salmonella* contamination of water and feed supply systems may include heat treatment of feed, incorporation of organic acids, bacteriocins, or minerals into feed, addition of acidifiers to feed or water, etc. (Awad *et al.*, 2014, Ojha *et al.*, 2007, De Busset *et al.*, 2013).

Implement biosecurity at farms and processing facilities. Controlling access of rodents, insects, wild birds, and personnel to food animals can prevent horizontal disease transmission from these potential disease carriers (Andres *et al.*, 2015).

Prevention of *Salmonella* infection within food animals.

- **Vaccines.** Although vaccination may make it difficult to distinguish vaccinated from infected animals serologically, there is evidence it can reduce *Salmonella* in food animals and products derived from them (Revolledo *et al.*, 2012). Many egg producers already vaccinate against *Salmonella enterica*.

- **Antibiotics.** Though pending regulatory changes regarding antibiotic use in food animals will restrict their use to an extent, antibiotic treatment of *Salmonella*-infected food animals is still a valid and necessary practice.

- **Phage therapy.** Phages are viruses that specifically infect and lyse bacteria of a specific strain. The efficacy of phage therapy to control *Salmonella* in poultry and swine has been demonstrated, and its use in live food animals has been approved by the FDA (Endersen *et al.*, 2014). Phage treatments against *Salmonella* in animal feed have also been approved.

- **Competitive exclusion with other bacteria.** In the absence of other microbes, a new microbe can establish a foothold and thrive. The successful control of *Salmonella enterica* serotypes Pullorum and Gallinarum (which cause significant mortality in poultry but do not infect humans) in the 1950s in the U.S. and Europe may have inadvertently created an opening which allowed colonization by *S. enterica* serotype Enteritidis (Foley *et al.*, 2011), a serotype which can cause human disease. Competitive exclusion can, however, be harnessed towards positive ends. The introduction of a defined mixture of nonpathogenic bacteria (obtained from healthy animals) to very young animals has been demonstrated to prevent subsequent infection with pathogens such as *Salmonella* (Jordan *et al.*, 2014).

- **Probiotics and prebiotics.** Probiotics are a competitive exclusion approach in which live bacteria, often lactic acid bacteria or other microbes not normally found in the host species, are given to animals in an attempt to remodel the gut microbiome (Ojha *et al.*, 2007). Use of probiotics may enhance growth of food animals and prevent the growth of pathogens. Prebiotics are diet ingredients that are not digested by the host, but instead “feed” beneficial microbes residing in the gut. Fermented liquid feed can be considered a probiotic and has been shown to protect animals from *Salmonella* infection (Missotten *et al.*, 2015).

Improved hygiene for animals. Although increasing cleaning and sanitation frequency and maintaining animals at lower density might be expected to reduce *Salmonella* infection in food animals (and likely be beneficial), demonstrating that specific hygiene and sanitation practices reduce *Salmonella* infection rates in animals has not been straightforward. The difficulty in documenting benefit from such practices may be related to the large numbers of *Salmonella* that can be present and persist in the environment (Andres *et al.*, 2015).

Pre-Harvest

Animal transport and slaughterhouse practices can greatly impact *Salmonella* contamination rates for animal carcasses and the eventual meat or poultry products.

Timing of feed withdrawal. A typical practice is to remove feed from animals well before slaughter to minimize fecal contamination of the carcass. However, removal of food too early can stress the animal, which can impact *Salmonella* shedding in addition to affecting meat quality. Timing of feed withdrawal may influence where pathogens are found within the animal carcass. For example, early feed withdrawal in broiler chickens may increase amounts of *Salmonella* present in the crop (esophagus) or the ceca (large intestine), as chickens are more likely to peck at and consume contaminated litter after feed withdrawal (Corrier *et al.*, 1999).
Minimization of animal stress. Stress during transport and prior to slaughter increases shedding of Salmonella in animals (Arguello et al., 2013, Beach et al., 2002), increasing the risk of infection of other animals. Animal density and acclimation time prior to slaughter are important factors impacting animal stress.

Transport, lairage, and slaughterhouse practices. Segregation of herds with high vs. low Salmonella infection rates during transport, the methods used to clean and sanitize containers and trucks used to transport animals, the time and distance of travel, and other factors can affect Salmonella infection rates in animals after transport (Berends et al., 1996). Similarly, the time and conditions (including segregation of infected animals) during lairage and at the slaughterhouse have a significant impact on Salmonella cross-contamination. Animals can become infected after very short exposures to Salmonella; turkeys can become infected from 2 hours of exposure to Salmonella-contaminated airborne dust (Harbaugh et al., 2006), and pigs become infected within 2 hours of being placed in a contaminated environment (Hurd et al., 2002).

Post-Harvest

Slaughter and carcass processing. Slaughter and carcass processing involve many variables that can introduce Salmonella contamination onto meat and poultry products. Most HACCP plans include procedures designed to reduce contamination rates during this part of meat production; however, their impact on Salmonella reduction can vary (Wilhelm et al., 2011). Overall, the incorporation of practices which best address an individual processor’s Salmonella contamination concerns is an important component of reducing Salmonella on meat and poultry products.

Meat processing. Processed meats that are considered raw (meat patties, fresh pork sausage, uncooked bratwurst, bacon, etc.) may not receive additional interventions with respect to Salmonella since they must be cooked by consumers prior to eating, although some manufacturers do implement interventions to target Salmonella that might arise during processing (i.e., contamination from lymph nodes). Conversely, however, significant attention is paid to reducing the risk of Salmonella contamination in RTE (cooked, fermented, or dried) meat products:

- Raw and RTE product should be effectively separated to prevent post-process contamination.
- Cooking requirements for RTE products (prior to marketing) ensure destruction of any Salmonella present in the raw meat. Salmonella is generally less resistant to heat than Listeria monocytogenes. Additionally, Salmonella does not persist in a refrigerated RTE environment.
- Dried meats such as jerky are required to have a high humidity thermal step during production before drying to eliminate Salmonella before they can develop heat resistance due to drying (Buege et al., 2006).

Consumer-level Strategies

Though the industry employs significant efforts to reduce Salmonella contamination in meat and poultry products, consumers can follow a number of recommendations to reduce the risk of Salmonella infection:

Separate foods. Keep raw meat, fish, eggs, and poultry separate from other foods during storage and food preparation. Be careful not to cross-contaminate. Use separate utensils or cutting boards for raw and cooked foods, or wash well between uses.

Wash hands and surfaces. Wash hands, and food contact surfaces often and after being in contact with raw meat, fish, or poultry.

Consider who will have contact with what you are cooking as you are cooking. Be aware that infants, the elderly, and the immunocompromised may be more susceptible to infection. When cooking with raw meat, fish, or poultry, make sure you wash properly before feeding an infant, for example.

Cook foods to a proper temperature. Measure temperature with a clean digital thermometer. FSIS recommends that foods be cooked to the temperatures shown in Table 4 to ensure safety.

Take-home Messages

Salmonella is the most frequently reported cause of bacterial foodborne illness in the U.S.

About one-third of the Salmonella-related disease reported in the US is attributed to poultry and meat, with almost another third of infections associated with vegetables. Eggs and fruit/nuts each contribute to about 15% of Salmonella cases.

Salmonella can grow at pH values as low as 4 and temperatures as low as 2°C (36°F), and can survive for years in low-water-activity foods such as peanut butter or in frozen meats. Its ability to grow, adapt to, or persist in so many conditions (in combination with a low infectious dose) make it a particularly problematic foodborne pathogen.

More than 2600 serotypes of Salmonella exist. Some are adapted to a particular host, and tend to cause severe systemic disease in those animals but little effect in other species. Other serotypes are generalists, infecting many species and typically causing a milder gastrointestinal illness.

A significant proportion of Salmonella isolates from food animals show resistance to multiple antibiotics and is considered a serious public health threat.

Since 1996, USDA’s Food Safety Inspection Service has required establishments that slaughter or prepare certain raw meat products meet minimal performance standards of Salmonella contamination. Salmonella is not currently considered an adulterant in raw meat.

The industry recognizes the risk of Salmonella associated with meat and poultry and has employed significant and broad-based strategies to minimize the threat of contamination.

Consumers can work with the meat industry to ensure the safety of food by following a few simple and easily implementable practices (i.e. separation of raw/cooked foods, cooking foods to the proper temperature, etc.).

Acknowledgements

The authors would like to thank Lindsey Jahn and Drs. Mark Cook, Keith Poulsen, Kathy Glass, and Chuck Czuprynski from the University of Wisconsin – Madison and Dr. Melvin Hunt of Kansas State University for helpful comments.
<table>
<thead>
<tr>
<th>Food Type</th>
<th>Safe Temperature</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw beef, pork, lamb steaks, chops, roasts</td>
<td>62.8°C (145°F)</td>
<td>Measure the temperature before removing meat from source, and let rest for at least 3 minutes before serving</td>
</tr>
<tr>
<td>Ground beef, pork, lamb</td>
<td>71.1°C (160°F)</td>
<td>Allow to rest at least 3 minutes</td>
</tr>
<tr>
<td>Poultry</td>
<td>73.9°C (165°F)</td>
<td>If packaged in USDA-inspected plants</td>
</tr>
<tr>
<td>Ham (fresh or smoked; uncooked)</td>
<td>62.8°C (145°F)</td>
<td>Not recommended to be cooked inside poultry; cook separately to 73.9°C (165°F)</td>
</tr>
<tr>
<td>Ham (cooked)</td>
<td>60°C (140°F)</td>
<td></td>
</tr>
<tr>
<td>Stuffing for poultry</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td>62.8°C (145°F)</td>
<td></td>
</tr>
<tr>
<td>Egg dishes</td>
<td>71.1°C (160°F)</td>
<td></td>
</tr>
<tr>
<td>Sauces</td>
<td>Reheat to a boil</td>
<td></td>
</tr>
<tr>
<td>Leftovers or casseroles</td>
<td>73.9°C (165°F)</td>
<td></td>
</tr>
</tbody>
</table>

Source: USDA Food Safety and Inspection Service, 2013, USDA Food Safety and Inspection Service, 2012b

References

DOYLE, M. E. 2015. Multidrug-resistant pathogens in the food supply. Foodborne Pathogens and Disease, 12, 261-279.

EUROPEAN FOOD SAFETY AUTHORITY. 2009. Scientific opinion of the panel on biological hazards on a request from European Commission on quantitative estimation of the impact of setting a new target for the reduction of Salmonella in breeding hens of Gallus gallus. The EFSA Journal, 1036, 1-68.

