Tenderness Evaluation in Poultry Meat

Casey M. Owens, Ph.D.

University of Arkansas
Poultry Science Department
Per Capita Consumption of Poultry

DOUBLED in 30 years

Chicken
Turkey

%
U.S. Poultry Industry: Market Segments

% of Production

- Whole
- Parts
- Further Processed

Consumer Appeal

Convenience
Versatility
Healthy
Economical
Consumer Purchasing Habits

- Other
- Bone-in Breast
- Wing
- Thigh
- Drumstick
- Leg
- Whole
- Boneless, Skinless Breast

% of Respondents

* Heavy chicken consumers purchase at higher rates.

National Chicken Council, 2003
Market Demand and Production

- Increased production of boneless breast meat
- Shorter aging periods
- Need for quality control to ensure tender product
Factors Affecting Poultry Meat Tenderness
Factors Affecting Poultry Meat Tenderness

- Bird and Environment
 - Age
 - Sex
 - Strain
 - Stresses (nutritional/environmental)

- Various, conflicting reports

- Little research on the “bird of today”

Guhne, 1970; Simpson and Goodwin, 1984; Lyon and Wilson, 1986; Smith and Fletcher, 1988; Poole et al., 1999; Sams, 2002
Tenderness of Commercial Strains (6 & 7 wk)
Deboned at 2 and 4 h Postmortem

Neither tough nor tender

*Significant of debone hour, age, and strain

Mehaffey et al., 2004
Factors Affecting Poultry Meat Tenderness

- PROCESSING CONDITIONS
 - Deboning
 - Chilling
 - Interactions with rigor development

- Cooking Methods
 - Effect on juiciness

Stewart et al., 1984; Lyon and Wilson, 1986; Dawson et al., 1987
Factors Affecting Poultry Meat Tenderness – Intrinsic Factors

- Myofibrillar component
- Connective Tissue component
- Juiciness
Tenderness: Myofibrillar Component

Factors affecting contractile state:

- Early deboning shortens sarcomeres
Tenderness of Broiler Breast Meat Deboned at Various Times

Razor Blade Total Energy (N.mm)

- Very Tender
- Moderately Tender
- Slightly Tender
- Neither Tough nor Tender
- Slightly Tough

Time Postmortem (hours)
Tenderness: Myofibrillar Component

- Age 4-6+h prior to deboning
 - BUT, higher production costs
- Shortened aging periods decrease tenderness
 - Help streamline process
Techniques to Improve Tenderness of Early Harvested Breast Meat

- ELECTRICAL STIMULATION
- Wing restraint or tensioning
- Post-chill flattening
- Extending chilling
- MARINATION
- Combination of techniques
Tenderness: Connective Tissue

- Not a major influence in young broilers, problem in spent fowl
- Heat stable crosslinks form as animal ages
- High tensile strength
Tenderness: Juiciness

- Associated with texture; lubrication effect
- Cooking high heat, low moisture environments results in drier, less juicy product
- Consumers perceive less juicy meat as tougher

Lawrie, 1974; Lyon and Wilson, 1986; Lyon and Lyon, 1990
Methods to Measure Texture

- Tenderness
 - Allo-Kramer
 - Warner-Bratzler
 - Razor Blade
 - TPA
 - Sarcomere Length
 - Sensory – Descriptive/Consumer
Warner-Bratzler Shear

- Single blade triangle cut (TA-7)
- 1 sample / fillet (width/height 19mm)
- Cross head speed: 500 mm/min (8.33 mm/s)
- Maximum Force (Kg)

DeMan et al., 1979; Lyon and Lyon, 1990; Lyon and Dickens, 1993; Lyon et al., 1997
Allo-Kramer Shear

- 10 blade shear cell
- Cross head speed: 500 mm/min (~8.33 mm/s)
- Sample size (40 x 20 x 7 mm)
- 2 samples/fillet
- Maximum Force (Kg/g)

Kramer *et al.*, 1951; Sams, 1990; Lyon and Lyon, 1990
Razor Blade Shear Device

- 8.9 mm width razor blade
- Cross head speed: 10 mm/s
- Intact Fillet
- Multiple shears/fillet
- Maximum Force (N)
- Total Energy (N.mm)

Cavitt et al., 2001, 2004
Instrumental Shear

- Typical location
- Can vary slightly
Texture Profile Analysis

- Instrumental method that emulates conditions that food is subjected to in mouth
- Similar results to WB and AK
- Maximum force
- Not best tool for sole use in predicting whole muscle meat tenderness

Szczesniak, 1963
Sarcomere Length

- Laser diffraction method
- Measure of contractile state
- Highly correlated with tenderness

Locker, 1960; Cross et al., 1981; Sams et al., 1990
Descriptive Sensory Analysis

- 6 member trained meat descriptive sensory panel
- 15 cm linear reference scale
- Sample size: 3-4, 0.5 inch cubed
 - First Bite/Chew
 - initial hardness
 - Chewdown Characteristics (after 10-12 chews)
 - chewdown hardness

Meilgaard et al., 1999
Consumer Sensory Analysis

- Consumers
- 9 point Hedonic and Intensity scale
- 5 point Just-About-Right scale
- Sample size: 3-4, 0.5 inch cubed
 - Overall Acceptance (Texture and Tenderness)
 - Intensity of Tenderness
 - JAR (Tenderness and Juiciness)

- Can be expensive, time consuming
Consumer Ballot: Hedonic and Intensity

2. Considering only TENDERNESS, which of the statements below best describes your impression of this product?

Check () your response

<table>
<thead>
<tr>
<th>Dislike Extremely</th>
<th>Dislike Very Much</th>
<th>Dislike Moderately</th>
<th>Dislike Slightly</th>
<th>Neither Like</th>
<th>Like Slightly</th>
<th>Like Moderately</th>
<th>Like Very Much</th>
<th>Like Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Explain your choice

1

3. Concentrating on the INTENSITY OF TENDERNESS (the way it feels in your mouth), which of the statements below best describes your impression of intensity of tenderness of this product?

Check () your response

<table>
<thead>
<tr>
<th>Extremely Tough</th>
<th>Very Tough</th>
<th>Moderately Tough</th>
<th>Slightly Tough</th>
<th>Neither tender nor Tough</th>
<th>Slightly Tender</th>
<th>Moderately Tender</th>
<th>Very Tender</th>
<th>Extremely Tender</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Explain your choice
4. Concentrating on the TENDERNESS of this product, which of the statements below best describes your impression of this product?

Check () your response

<table>
<thead>
<tr>
<th>Much Too Tough</th>
<th>Too Tough</th>
<th>Just About Right</th>
<th>Somewhat Too Tender</th>
<th>Much Too Tender</th>
</tr>
</thead>
<tbody>
<tr>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
</tr>
</tbody>
</table>

Explain your choice

5. Concentrating on the JUICINESS of this product, which of the statements below best describes your impression of this product?

Check () your response

<table>
<thead>
<tr>
<th>Much Too Dry</th>
<th>Too Dry</th>
<th>Just About Right</th>
<th>Somewhat Too Juicy</th>
<th>Much Too Juicy</th>
</tr>
</thead>
<tbody>
<tr>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
<td>⬜</td>
</tr>
</tbody>
</table>
Relationships among Evaluation Methods
Allo-Kramer Shear vs. Razor Blade Shear

Cavitt et al., 2001
Correlations between Sensory and Instrumental Texture Measurements

<table>
<thead>
<tr>
<th></th>
<th>Sarcomere Length</th>
<th>AK Shear Value</th>
<th>Max. Force</th>
<th>Total Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial hardness</td>
<td>-0.93</td>
<td>0.82</td>
<td>0.86</td>
<td>0.92</td>
</tr>
<tr>
<td>Chewdown hardness</td>
<td>-0.91</td>
<td>0.81</td>
<td>0.85</td>
<td>0.90</td>
</tr>
<tr>
<td>Sarcomere Length</td>
<td>--</td>
<td>-0.91</td>
<td>-0.85</td>
<td>-0.94</td>
</tr>
</tbody>
</table>

(P < 0.05)
Instrumental and Sensory Measurements of Tenderness

Cavitt et al., 2004b
JAR Distribution for Meat Deboned 0.25 h through 24 h Postmortem

Cavitt et al., 2004b
Regression Model for RBE against Intensity of Tenderness

\[y = -0.0549x + 13.631 \]

\[R^2 = 0.9048 \]

Regression Model for WBF against Intensity of Tenderness

\[y = -0.5058x + 9.2399 \]

\[R^2 = 0.9668 \]

Regression Model for AKSV against Intensity of Tenderness

\[y = -0.5029x + 9.818 \]

\[R^2 = 0.9122 \]

Cavitt et al., 2004b
Equivalency Scales for Instrumental Measurements

<table>
<thead>
<tr>
<th>Intensity of Tenderness</th>
<th>Razor Blade Force (N)</th>
<th>Razor Blade Energy (N*mm)</th>
<th>Allo-Kramer Shear Value (kgf/g)</th>
<th>Warner Bratzler Shear Force (kgf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Tough</td>
<td>18.00</td>
<td>221.97</td>
<td>16.70</td>
<td>15.98</td>
</tr>
<tr>
<td>Very Tough</td>
<td>16.69</td>
<td>205.48</td>
<td>14.89</td>
<td>14.08</td>
</tr>
<tr>
<td>Moderately Tough</td>
<td>15.38</td>
<td>188.99</td>
<td>13.07</td>
<td>12.17</td>
</tr>
<tr>
<td>Slightly Tough</td>
<td>14.07</td>
<td>172.49</td>
<td>11.26</td>
<td>10.26</td>
</tr>
<tr>
<td>Neither Tough nor Tender</td>
<td>12.77</td>
<td>156.00</td>
<td>9.44</td>
<td>8.36</td>
</tr>
<tr>
<td>Slightly Tender</td>
<td>11.46</td>
<td>139.51</td>
<td>7.63</td>
<td>6.45</td>
</tr>
<tr>
<td>Moderately Tender</td>
<td>10.15</td>
<td>123.01</td>
<td>5.82</td>
<td>4.54</td>
</tr>
<tr>
<td>Very Tender</td>
<td>8.84</td>
<td>106.52</td>
<td>4.00</td>
<td>2.64</td>
</tr>
<tr>
<td>Extremely Tender</td>
<td>7.54</td>
<td>90.03</td>
<td>2.19</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Cavitt et al., 2004b
Razor Blade test provides advantages over other methods for evaluating tenderness in cooked broiler breast fillets

- Requires no sample cutting
- Not excessively destructive
- Cost efficient
- Similar or greater precision for predicting tenderness
Cost Estimates for Analyzing Tenderness Using Razor Blade Method

*Calculation based on $11.00/h x est. time to complete samples. Instron (AK or WB Analysis) = 30 smp/h Texture Analyzer (Razor Blade Shear) = 60 smp/h

Cavitt, 2003
Acknowledgements

➢ Co-Investigator
 • Dr. Jean-Francois Meullenet

➢ Graduate Students
 • L. Cain Cavitt
 • Rui Xiong

➢ Funding
 • Institute of Food Science & Engineering
 • Cobb-Vantress
 • USDA
 • UA, AES