Effects of feeding Ractopamine (Paylean) on growth and carcass traits in finishing pigs marketed at equal weights

Four hundred seventy-two pigs were used to determine the impact of feeding ractopamine hydrochloride (RAC) in an equal ending weight marketing scenario. The study was carried out as a randomized complete block design in a 2×3 factorial arrangement. Barrows and gilts were fed 3 different RAC concentrations before harvest (0 mg/kg, 5 mg/kg for up to 35 d, or 5 mg/kg for 21 d followed by a step-up to 7.4 mg/kg for 14 d). Pigs were allotted to single gender pens at 34.5 kg initial bodyweight (BW). Pens (48) were allotted to treatment when the population mean BW reached 97.3 kg, then variation of bodyweight within each pen was accounted for. Pigs were individually weighed on a weekly basis. Each week, all pigs reaching or exceeding 124.4 kg were individually tattooed and tracked through the commercial processing facility. Each treatment was represented during each harvest period. All remaining pigs were marketed on d 35 of the feeding trial. Individual hot carcass weight, loin depth and fat depth data were collected on all pigs (n=457; 13 lost during harvest). Individual pig data were then averaged across the pen, which served as the experimental unit. Ractopamine treatments were pooled for analysis, because no treatment differences (P>0.05) were found between the 5 mg/kg for up to 35 d and 5 mg/kg to 7.4 mg/kg step-up program. There were no interactions (P>0.05) between sex and diet, therefore only main effects are reported. The coefficient of variation (CV) in beginning BW of RAC (7.16%) and control pigs (6.95%) was not different (P=0.68). However, RAC fed pigs (3.91%) had lower (P<0.01) market BW CV than controls (5.27%). Pigs fed RAC reached market weight 2.48 d earlier (P=0.01) than control pigs. Ractopamine fed pigs had an improved (P<0.01) feed efficiency and a greater (P<0.01) ADG than control pigs. Control and RAC pigs did not differ (P=0.18) in ADFI. Ractopamine fed pigs also had 3% greater HCW (P<0.01) and a 3% increased loin depth (LD) (P=0.05). Ractopamine fed pigs had 1% improved dressing percentage (P<0.01) than control pigs. However, fat depth (FD) was not different (P=0.40) between RAC and control pigs. Pigs fed RAC had less (P<0.01) sort loss/cwt ($0.15) compared with the control pigs ($0.95). Eight control and 2 RAC fed pigs had HCW less than 76.9 kg (sort loss threshold). Ractopamine can be an important tool in improving growth and efficiency, reducing the variation in market weight and sort loss of finishing pigs.

Specific long-chain fatty acids preferentially induce differentiation of bovine intramuscular or subcutaneous preadipocytes.
L. C. Davis, J. L. Owens, G. K. Murdoch, R. A. Hill, M. D. Donum, University of Idaho, Moscow, United States

Understanding the mechanisms controlling the accumulation of distinct adipose tissue depots of cattle will facilitate efforts to selectively increase intramuscular (IM) fat or reduce subcutaneous (SC) fat. Our objectives were to compare differentiation of bovine preadipocytes isolated from IM and SC adipose tissues in response to long-chain fatty acids (FA). Clonally-derived preadipocytes or stromal–vascular (S–V) cells were suspended in medium consisting of basal medium (DMEM, 1% antibiotic-antimycotic, 50 μg/mL gentamicin sulfate, 33 μM biotin, 17 μM pantothenate, and 100 μM ascorbate) supplemented with 10% fetal bovine serum. Cells were seeded at 10,000 cells per 16 mm-diameter well, and grown to confluence at 37 °C in a humidified atmosphere containing 5% CO2. Preadipocyte differentiation was induced by basal medium supplemented with 250 nM dexamethasone for the first 48 h, 10 μM troglitazone, 280 nM bovine insulin, 20 mM glucose, 0.5% FA-free bovine serum albumin, and FA treatment. Cells were exposed to differentiation media for 10 d, and fresh media were provided every 3 d for 10 d. Fresh media were provided every 3 d. Differentiation media for 10 d, and fresh media were provided every 3 d. Differentiation media for 10 d, and fresh media were provided every 3 d.
2 d. Morphological differentiation was assessed by quantifying the total number of cells and those containing lipid droplets stained with oil red O (ORO) in 8 fields per well. Clonally-derived IM and SC preadipocytes were used to examine the effects of 0, 25, 50, 100, or 200 μM oleic acid (OLE), linoleic acid (LIN), or arachidonic acid (ARA) on adipogenesis. Treatment × depot interactions were observed with both OLE (P = 0.051) and LIN (P = 0.001). Oleic acid (50, 100 and 200 μM) and LIN (25, 50, 100, and 200 μM) increased the percentage of ORO positive SC preadipocytes compared with cells exposed to no FA. In contrast, only 200 μM OLE increased the percentage of ORO positive IM preadipocytes compared with cells exposed to no FA, and LIN had no effect on IM preadipocytes. A depot × treatment effect (P = 0.001) was also observed with ARA. However, the percentage of ORO positive cells was higher (P = 0.05) than control in IM preadipocytes exposed to 50, 100, and 200 μM ARA, but only 200 μM ARA increased the proportion ORO positive SC preadipocytes. Effects of FA combinations, OLE + LIN, OLE + ARA, and LIN + ARA, were determined using each FA at 100 μM. Intramuscular and SC S–V cells isolated from 3 steers were used to examine effects of FA on heterogeneous preadipocyte populations, and to evaluate the combined effects of long-chain FA. Treatment × depot effects (P < 0.01) were observed with the effects of ARA, LIN, OLE, and their combinations on percent ORO positive cells. Arachidonic acid, OLE, and their combinations increased (P < 0.05) SC preadipocyte differentiation relative to control, but only ARA increased IM preadipocyte differentiation. Combinations of OLE or LIN with ARA decreased (P < 0.05) the proportion of ORO positive IM preadipocytes compared with ARA alone. In summary, differentiation of clonally derived bovine SC preadipocytes is induced by OLE and LIN to a greater extent than IM preadipocytes, whereas ARA appears to have the opposite effect. Because specific FA preferentially induce differentiation of bovine IM or SC preadipocytes, this information may be useful for developing strategies to improve beef quality or carcass yield.

Keywords: Bovine, Preadipocyte, Fatty acid

Influence of maternal nutrition on histology and gene expression of myoregulatory factors in fetal bovine muscle

T. D. Jennings*, K. R. Underwood, A. E. Wertz-Lutz, A. D. Weaver, South Dakota State University, Brookings, United States

Given the potential variation in forage quantity and quality available to gestating cows, it is possible to encounter periods of nutrient restriction, while supplementation decisions could lead to periods of over-nutrition. Manipulation of maternal nutrition during this period has been shown to influence myogenesis in the fetuses of various species, however bovine research is limited. Further, secondary myogenesis, which is central to skeletal muscle development, occurs primarily during mid-gestation in beef cattle. Therefore, the objective of this study was to determine the effects of maternal nutrition on muscle characteristics and gene expression of fetal myoregulatory factors. Twenty-two bred Angus × Hereford × Leicestrian × Shorthorn × Holstein × Jersey × Black angus crossbred heifers (BW = 527.73 ± 83.8 kg) were assigned randomly to one of 3 dietary treatments providing 180% (HIGH; n = 7), 107% (INT; n = 7), or 88% (LOW; n = 8) of the energy requirements for growing pregnant heifers, from d 85 to 180 of gestation. Body weight and ultrasound measurements for fat thickness (FT) and ribeye area (REA) were recorded to determine changes in dam body condition. Fetuses were removed via cesarean section at d 180 of gestation and fetal weight and crown rump length were recorded. Samples from the longissimus dorsi (LD) were excised from the left side of each fetus, diced, snap frozen, and stored at −80 °C for evaluation of expression of select genes using real-time PCR. MyoD, Myf5, myogenin, and MRF4 were evaluated as they are essential for myoblast determination and proliferation, as well as myostatin, which appears to mediate myoblast number and fusion. Nutrition has also been shown to influence calpain expression in bovine fetuses; therefore, expression of the calpain protease system was also quantified. The LD from the right side of each fetus was also dissected, fixed in paraformaldehyde and embedded in paraffin. Transverse sections, 10 μm thick, were cut and stained with hematoxylin and eosin to determine fiber area and diameter. At trial initiation, dam BW was similar among treatment groups. Final BW was lowest for the LOW dams (P < 0.05), however final BW for INT and HIGH were similar. Ribfat thickness increased in the HIGH treatment group compared with LOW and INT dams (P < 0.05) and HIGH heifers tended to have had greater final REA than INT and LOW heifers (P = 0.10), which were similar. Thus, dam weight and composition were influenced by diet during the treatment period, however dietary treatment did not influence fetal weight or crown rump length (P = 0.45 and P = 0.16 respectively). Expression of MyoD, Myf5, and MRF4 were similar between treatments, however myogenin was more highly expressed (P = 0.04) in the HIGH fetuses as compared with the LOW, and could indicate greater terminal differentiation of myoblasts. No differences were detected between treatment groups for expression of myostatin, m-calpain or calpastatin. However, μ-calpain showed increased expression in fetal LD (P < 0.01) of HIGH fetuses compared with INT, but did not differ from LOW (P = 0.45). Muscle fiber diameter and area were similar between treatment groups (P = 0.98 and P = 0.98 respectively). Collectively, these results suggest that fetal size and muscle development are not affected by the degree of maternal nutrient manipulation imposed during mid-gestation in this study.

Keywords: Beef, Fetal programming, Myogenesis

Differences in Minolta color score and beef tenderness associated with feedlot stress and slaughter method

J. D. Magolski a,*, K. R. Maddock-Cardin a, V. L. Anderson b, C. A. Schwartz a, A. N. Lepper a, W. L. Keller a, X. Sun b, X. B. Ilse b, E. P. Berg a, 2North Dakota State University, Fargo, United States, bCarrington Research Extension Center, North Dakota State University, Carrington, United States

The objective was to investigate the effect of beef cattle temperament and harvest method on Minolta color scores and tenderness. Measurements of temperament including exit velocity (EV), chute score (CS), and catch score (CAPS) were obtained before slaughter on Angus × Piedmontese crossbred heifers (n = 126). At 14 to 16 mo of age (580 ± 43 kg), heifers were transported 30 km to a commercial slaughter facility. Heifers were harvested on 2 consecutive Mondays (64 and 62 heads, respectively) with 53 of the 64 heads on d 1 slaughtered kosher, and the remaining 73 head stunned using a captive bolt. Climatic conditions, transportation method, and duration were similar between slaughter dates. Vocalization scores (VOCAL) and blood lactate measurements (LAC) were obtained at time of slaughter. At approximately 24 h postmortem, carcass measurements and marbling scores were obtained. Longissimus thoracis (LT) samples were collected and transported to the North Dakota State University Meat Laboratory for packaging and 14-d aging before Minolta color score and Warner–Bratzler shear force (WBSF) measurements. Data were analyzed using Proc CORR and Proc GLM utilizing slaughter method, date, and pen as classes; with slaughter method slaughter date and pen (slaughter date) in the model. Temperament scores including CS, CAPS, and VOCAL correlated (P < 0.03) with LAC (r = 0.267, r = 0.209, and r = 0.369, respectively). EV and CAPS were negatively correlated (P = 0.001; r = −0.385). WBSF was positively correlated (P = 0.01) to L*, a*, and b* Minolta color scores (r = −0.278, r = −0.332, and r = −0.359, respectively). The LT from kosher slaughtered heifers had increased (P < 0.01) L* (42.77 ± 0.54 vs. 40.29 ± 0.33), a* (27.72 ± 0.44 vs. 25.78 ± 0.25), and
Lycopene is an acyclic carotenoid without provitamin A activity. It is a potent quencher of singlet oxygen and a scavenger of peroxyl radicals, so recognized as a strong natural antioxidant. Tomatoes are considered to be rich source of lycopene. Lipid oxidation is a major factor responsible for the color and flavor deterioration of meat during storage. Therefore, the efficacy of selected levels of different tomato products such as tomato puree (T1–10%), tomato pulp (T2–12.5%) and lyophilized tomato peel (T3–6%) were evaluated in cooked pork patties during refrigerated aerobic storage. The patties were formulated as described above without any tomato products. The samples were drawn at 5 d intervals up to 20 d for the evaluation of various physico-chemical and sensory parameters. The number of observations recorded per treatment were 6 for physicochemical parameters, whereas 21 for sensory evaluation. Two-way ANOVA was carried out and significance was drawn using Duncan’s Multiple Range Test. The pH was higher (P<0.05) in the control than all the tomato-treatments and was lowest in T3. The pH decreased for all the products linearly throughout the storage. Beta-carotene and lycopene content was highest in T3 and declined during the storage. The L* value was lower (P<0.05) in T3 whereas a* and b* values were highest in T3. Percentage metmyoglobin formation was higher (P<0.05) in the control patties than all the tomato-treated patties and increased linearly throughout the storage period. However, the rate of increase was higher (P<0.05) in the control than tomato-treated products. Peroxide value, free fatty acid content and lipid oxidation were lower (P<0.05) in the tomato treatments than the control and increased throughout storage. Sensory scores for color and appearance were higher (P<0.05) in T1 and T2 than in T3 and the control on 0 d and this trend continued throughout the storage. All the tomato-treated groups exhibited higher oxidative stability in comparison to controls during the entire storage. Incorporation of 6% lyophilized tomato peel (T3) demonstrated greatest improvement in color, flavor, and oxidative stability of refrigerated pork patties.

Keywords: Lycopene, Pork patties, Tomatoes

Evaluation of a solidstate fermented apple byproduct feed on nutrient content and quality of pork meat

Including fermented apple by-products in an animal diet may modify the quality of meat due to their effects on biochemical processes, which are consequently reflected in nutrient content, physicochemical and oxidative processes of animal muscles. The aim of present work was to evaluate the effect of a diet containing a solidstate fermented apple by-product (SFA) and a fibrilogenic enzyme (ENZ) on the quality of pork meat. Twenty-four Landrace × York pigs 38.9 ± 3.6 kg were randomly assigned (4 per treatment) and fed during 9 weeks with an isoproteic and isonenergetic diet including different levels of SFA and ENZ; T0–0 (0% SFA–0% ENZ), T0–1 (0% SFA–0.1% ENZ), T5–0 (5% SFA–0% ENZ), T5–1 (5% SFA–0.1% ENZ), T10–0 (10% SFA–0% ENZ) and T10–1 (10% SFA–0.1% ENZ). Pigs were slaughtered when they reached 102 ± 1.8 kg. Samples of Longissimus dorsi muscle, taken from within the 10th and the 12th ribs, were analyzed to determine crude protein (CP), intramuscular fat (IMF), moisture (MC), organic matter (OM), ashes (AS) content, pH, water holding capacity (WHC), L*, a*, b* (D65/10°) and TBARS. Data was analyzed considering a completely randomized design with SFA and ENZ as fixed effects used MIXED procedure and PDIFST statement by SAS software. MC, AS and OM were affected by SFA (P<0.05) and ENZ (P<0.05), CP and IMF were affected by the SFA ENZ interaction (P<0.0002). T0–1 showed the highest CP content while T10–0 the lowest (P<0.05). Although T0–0 presented one of the lowest CP contents, it did not show significant differences with the highest and lowest (P>0.05), which might indicate that an increase of SFA or ENZ addition in the pigs diet did not affect negatively the CP content. In contrast to CP performance, IMF increased for T10–0.1 while for T0–0 decreased (P<0.05), being the lowest IMF content. It is possible that increasing SFA and ENZ addition in the diet, an increase in the IMF percentage occurs in the meat without rising the CP. T0–0 was higher in MC (P<0.05), AS (P<0.05) and lower in OM (P<0.05) than the others treatments. pH was affected by ENZ (P=0.0441), particularly for T5–0, which showed the lowest pH (P<0.05), whereas the rest of the treatments were similar (P>0.05). WHC, L*, a*, b* and TBARS were not affected by SFA or ENZ (P>0.05), nevertheless mean differences were observed. Regarding L* values, T0–0 was the highest and T10–0 the lowest (P<0.05); for a* values, those treatments were not different (P>0.05). Moreover, T5–0 showed the highest and T10–0.1 the lowest a* value (P<0.05). TBARS quantitation was higher for T5–0 while T5–0.1 was the lowest one (P>0.05). Respecting T0–0, there were no differences between the highest and lowest values (P>0.05). SFA or ENZ addition did not affect fat oxidation level. The results obtained suggest that 10% of SFA addition generates meat with high CP content, IMF and MC intermediate, more stable pH values and lower oxidation levels. SFA and ENZ addition to pig diet increase the CP and IMF content, keeping adequate pH, WHC, lightness and oxidation levels.

Keywords: Apple by-product, Pork quality, Meat

Table 1

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>T0–0</th>
<th>T0–0.1</th>
<th>T5–0</th>
<th>T5–0.1</th>
<th>T10–0</th>
<th>T10–0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>247.4±0.4</td>
<td>262.4±0.4</td>
<td>252.0±0.5</td>
<td>259.0±0.4</td>
<td>262.2±0.4</td>
<td>233.4±0.4</td>
</tr>
<tr>
<td>IMF</td>
<td>0.6±0.03</td>
<td>1.3±0.03</td>
<td>2.6±0.04</td>
<td>1.3±0.03</td>
<td>1.4±0.03</td>
<td>2.9±0.03</td>
</tr>
<tr>
<td>MC</td>
<td>72.4±0.2</td>
<td>71.2±0.2</td>
<td>71.3±0.3</td>
<td>70.5±0.2</td>
<td>71.5±0.2</td>
<td>71.4±0.2</td>
</tr>
<tr>
<td>pH</td>
<td>5.7±0.04</td>
<td>5.7±0.04</td>
<td>5.6±0.05</td>
<td>5.6±0.04</td>
<td>5.7±0.04</td>
<td>5.7±0.04</td>
</tr>
<tr>
<td>WHC</td>
<td>60.4±1.6</td>
<td>61.5±1.6</td>
<td>59.4±1.9</td>
<td>61.3±1.6</td>
<td>57.8±1.6</td>
<td>59.4±1.6</td>
</tr>
<tr>
<td>L*</td>
<td>51.9±3</td>
<td>50.5±3</td>
<td>50.4±3</td>
<td>48.1±3</td>
<td>41.2±3</td>
<td>49.2±3</td>
</tr>
<tr>
<td>a*</td>
<td>3.7±0.9</td>
<td>4.0±0.9</td>
<td>5.4±1</td>
<td>5.1±0.9</td>
<td>3.5±0.9</td>
<td>1.9±0.9</td>
</tr>
<tr>
<td>b*</td>
<td>15.3±0.8</td>
<td>15.2±0.8</td>
<td>14.4±1</td>
<td>16.1±0.8</td>
<td>13.8±0.8</td>
<td>14.1±0.8</td>
</tr>
<tr>
<td>TBARS</td>
<td>647.6±4.2</td>
<td>679.4±4.9</td>
<td>780.5±4.9</td>
<td>653.3±4.2</td>
<td>638.1±4.9</td>
<td>654.3±4.2</td>
</tr>
</tbody>
</table>
Comparison of Tulathromycin and Tilmicosin on the prevalence and severity of bovine respiratory disease in feedlot cattle in association with feedlot performance and carcass characteristics

T. Tennant, T. Lawrence, S. Ives, L. Harper, West Texas A&M University, Canyon, TX, United States, Cactus Feeders Inc., Cactus, TX, United States, Pfizer Animal Health, Kalamazoo, MI, United States

The objectives of this study were 1) to investigate the effects of metaphylactic treatment for bovine respiratory disease (BRD) on feedlot performance and carcass characteristics, and 2) evaluate the effect of lung lesion prevalence and severity with carcass characteristics. Cattle (n=2,362) initially weighing 310.5±31.3 kg were purchased from sale barns in Oklahoma and allocated in a randomized complete block design to one of three treatments (CON—no metaphylactic treatment; TUL—Tulathromycin at 0.499 mL/100 kg body weight; TIL—Tilmicosin at 0.680 mL/100 kg body weight). Pen (n=24) served as the experimental unit for objective 1; the individual animal served as the experimental unit for objective 2. Cattle requiring further prophylactic treatment were administered Cefotiofur (0.680 mL/100 kg body weight). Lungs of all steers were evaluated during harvest to assess presence or absence of pulmonary lesions in the anteroventral lobes, presence or absence of pleural adherences, and an evaluation of the bronchial lymph nodes. Response variables included dry matter intake, average daily gain, gain:feed, shrunk live weight, lung score, hot carcass weight, dressed yield, 12th rib fat depth, longissimus muscle area, calculated yield grade, marbling, quality grade, and calculated empty body fat. No significant difference for any response variable was found between TUL and TIL, therefore, further analysis for attributes was conducted as contrasts between metaphylactic treatments and CON. Incidence of BRD associated morbidity was observed at a rate of 9.6% whereas BRD related mortality occurred at rate of 2.24%. Lung lesions were present in 64.3% of lungs and were distributed almost equally between metaphylactic (63.9%) and control (65.1%) cattle. Compared to the CON treatment, cattle treated via metaphylactic therapy had greater (P<.05) average daily gain, gain:feed, shrunk live weights, dressed yield, hot carcass weight, 12th rib fat depth, and empty body fat. Steers with lung lesions had decreased (P<.05) hot carcass weights, less internal kidney, pelvic and heart fat, less 12th rib fat depth, decreased yield grade, decreased marbling scores, and empty body fat than steers without lesions.

Keywords: Metaphylactic, Respiratory lesions, Bovine respiratory disease

Analysis of the questionnaire with dendrograms based on CART models

A. Dufek, M. Homola, Agriresearch Rapotin Ltd., Vikyrovice, Czech Republic, Research Institute for Cattle Breeding, Ltd., Vikyrovice, Czech Republic

Traditional Czech cuisine involves pork, chicken, fish and beef. Whereas the meal from the first 3 species is prepared by many ways including grilling, the majority of the Czech population does not use grilling for beef. Beef is mainly used to prepare goulash or is stewed, served with soup and rice or dumplings. The purpose of our study was to evaluate relationship between consumer characteristics (gender, age, educational attainment, frequency of purchasing of meat, the most frequently bought and the most favorite species) and preference for cooking method of beef, degree of doneness of steaks and origin of beef. Completing the questionnaires (15 questions) was followed by rating of samples of grilled beef steaks to find out preference for beef from bulls or cows. Data gained from survey forms were evaluated with CART—Classification and Regression Tree models fitted in the package rpart, version 3.1–41 in the R software, version 2.7.2. The package allows quick view and further selection of significant factors and evaluation of their ratio of explained variability with effective visualization of their gradual relationship by dendrogram. The second aim of our work was to draw attention of scientists to this effective method of visualization of results from questionnaire. The total number of respondents was 132 (people qualified in agriculture) with the average age of 38.6, ranged from 11 to 73. There were 14 respondents with primary, 41 with secondary and 74 with university education. Results based on the question “What species do you consume most often”? were: 10% of respondents marked fish, 2.4% lamb, 19.4% beef, 40% pork and 27% chicken. Results based on the question “What species is your favorite?” were 16% marked fish, 7.4% lamb, 29% beef, 29% pork and 18.5% chicken. Difference between preferences for the most often consumed and the most favorite species was significant (Chi-sq=18.49, df=4, P=0.00098). The dendrogram regarding to beef showed that beef is preferred by respondents who had grilled beef yet and attained to university education or were younger than 48.5 years. Ratios of methods of cooking beef were: 27% stewing, 35.6% baking, 20% boiling and 43% grilling with the following degrees of doneness: 3.78% rare, 8.3% medium rare, 35.6% medium, 27% medium well, 23.5% well done. Degree medium was preferred by consumers who had had a grilled steak, and usually buy beef 1 times a week or month, are interested in origin of beef and do not eat chicken (this cascade of significant criterions appeared on the left branch of dendrogram). On the contrary, the right branch of the dendrogram showed that consumers who have not had a steak marked well done. Another terminal branch showed that respondents buying and grilling beef prefer medium, whereas the respondents who do not grill beef prefer medium well. As concern to the origin of beef, the model showed that the interest in beef of domestic production was higher in respondents whose age was greater than 24.5 years and prefer well-done steak. Among the consumers was possible to distinguish those who prefer steaks from bulls from those who prefer steaks from cows. Age in the latter group was higher than 51.5 or younger with preferences for well-done steak and grilling method. Our results indicate changes in consumer habits and their variability in the Czech Republic.

Keywords: Survey, Beef, Dendrogram

Product packaging trends in retail meat cases by species

K. S. Spivey, L. G. Garcia, J. M. Kelly, W. G. Kuecker, K. Boillot, R. Irion, A. J. Garmyn, J. C. Brooks, R. J. Rathmann, and M. F. Miller, Texas Tech University, Lubbock, United States, Cryovac Inc. Sealed Air Corporation, Duncan, SC, United States, National Pork Board, Des Moines, IA, United States, National Cattlemen's Beef Association, Centennial, CO, United States

Retail meat cases are steadily evolving in the United States. Packages have become more informative, case ready, and have also become more attractive to consumers. Trends in the packaging industry need to be followed to inform the retail distributors of the marketplace demands of consumers. The objective of this study was to evaluate the current trends in retail meat packaging by species. Packaging types were evaluated in 131 retail meat cases throughout the country. Packages were evaluated for packaging type, tray color, tray type, and case ready. All packages were categorized by species including beef, ground beef, pork, chicken, turkey, lamb, and veal. All data were imported into a commercially available software package and analyzed using the proc FREQ procedure in the Statistical Analysis System (SAS) 9.1.3 software. Polyvinyl chloride (PVC) packaging was most commonly used with 45% of fresh meat packages being PVC. Modified atmosphere packaging (MAP) was 14.8%, Simple Steps (SS)
was 14.1%, and laminate was 13.5%. MAP packaging was most widely used in ground beef, turkey, lamb, and veal; while laminate was most commonly used for pork and turkey. Most commonly used tray colors were white (31.6%) and black (25.3%) with white being used more with turkey and black primarily used for beef cuts. Yellow trays were used most commonly in chicken with 37.7% of packages containing yellow trays. Tray type varied with 62.2% of all trays being foam and 14.6% being rigid plastic. Case ready products comprised 61% of the fresh meat case with chicken (92.9%) and turkey (93.6%) being the main contributors. This study confirms the trends noticed in previous research that PVC is the most common packaging type with foam trays being the most common, as well as poultry products comprising the majority of the case ready packages.

Keywords: Retail meat case, Packaging

Investigating types of fresh meat products in the fresh meat retail case and distribution of retail space across the United States

The objective of this study was to further investigate trends of the retail fresh meat case focusing on fresh meat products and retail space in 131 stores nationwide across 5 regions of the United States in 2007. The United States was divided into Mountain/Southwest, Midwest, Northeast, Southeast, and West Coast. Categories recorded for the self-service case were whole muscle beef cuts, ground beef, pork, veal, lamb, chicken, turkey, fresh sausage, value-added, heat and serve, ham bone-in, ham boneless, ham steak, processed meat, seafood, nonmeat, and offal. Categories recorded for the full-service were seafood, beef, pork, chicken, ground beef, lamb, fresh sausage, turkey, veal, and nonmeat. One hundred percent of the stores, across regions had whole muscle beef cuts, ground beef, pork, chicken, turkey, fresh sausage, and heat and serve. Lamb (76.0%–96.0%) and value added (81.4%–95.6%) products were found in almost all stores. Veal was most commonly found in the Northeast region (96.0%), but was least likely to be found in the Mountain/Southwest (36.0%) region. Seafood products dominated the full-service meat case with 88.2% to 100.0% of stores carrying seafood products across regions. Nationally, whole muscle beef cuts, pork, chicken, and ground beef were the second most commonly found fresh products found in the full-service meat case (61.1% to 69.5%). Overall, the Mountain/Southwest region had the most linear meters dedicated to the fresh meat self-service case (91.8 m) whereas the Southeast Region had the least (79.4 m). Whole muscle beef cuts (12.3 m to 15.6 m), chicken (11.5 m to 15.9 m), and pork (8.4 m to 11.8 m) occupied a greater portion of the retail met case compared to other categories. Veal (1.0 m to 1.8 m), lamb (1.2 m to 2.0 m), offal (1.2 m to 2.6 m), and ham steak (0.8 m to 1.9 m) had the least linear meters dedicated to the fresh meat case. Linear meters for the full-service meat case was predominately dedicated to seafood (3.5 m to 5.2 m) followed by whole muscle beef cuts (1.2 to 2.0 m). Turkey had the fewest linear meters (0.0 to 0.2 m) dedicated to the full-service meat case.

Keywords: Retail, Market survey

Moderate exercise has minimal effect on meat quality traits in finishing heifers

Moderate exercise had minimal effect on meat quality traits in finishing heifers

Exercising beef cattle is an alternative production practice employed by an increasing number of producers seeking to meet changing consumer demands. However, little scientific data are available on how exercise effects beef quality traits. The objectives of this study were to document the effects of moderate forced exercise on meat quality traits in feedlot cattle. Crossbred heifers (n = 30; 448 ± 7.1 kg initial BW) were used in a randomized complete block experiment to assess impact of exercise regimen on postmortem pH, instrumental CIE L*, a* and b* values, Warner Bratzler shear force values and fatty acid concentration. Heifers were stratified by initial BW and assigned randomly, within strata, to Sedentary and Exercised groups. Cattle were housed in individual pens (1.5 m×6.5 m) and fed a finishing diet consisting of 93% concentrate and 7% roughage. Each Mon, Wed, and Fri, Exercised cattle were removed from their pens and forced to move by an animal handler on foot at a pace of 5 to 6 km/h (20 min/d for the first 2 weeks, 30 min/d for the next 2 weeks, and 40 min/d for a total of 8 weeks). Cattle (n = 16) remained in strata which were randomly selected and harvested at the Kansas State University Meat Laboratory. An initial pH measurement was collected at the beginning of the chilling period in the longissimus dorsi dorsal to the 12th rib and in the semimembranosus posterior to the ischium with additional measurements being collected every h for 12 h and a final pH collected 24 h postmortem. Instrumental lean color values were collected on the longissimus dorsi at the cut surface between the 12th and 13th ribs. Carcasses were fabricated and steaks were removed from 4 muscles; longissimus dorsi, triceps brachii, semitendinosus, and semimembranosus to represent support or locomotion muscles. Steaks were packaged and aged for 14 d postmortem and used for instrumental tenderness and fatty acid analysis. Data were analyzed using the Mixed procedure of SAS, with fixed effect of exercise regimen and random effects of strata and exercise regimen × strata. For pH, time postmortem and the interaction between time postmortem and exercise regimen were included as fixed effects for repeated measures. Exercise did not affect initial pH, rate of pH decline or final pH for either location (P > 0.05). Exercise cattle displayed no difference (P > 0.05) in instrumental L* values, but displayed increased (P < 0.05) a* and decreased (P < 0.05) b* values when compared with Sedentary cattle. No differences (P > 0.05) were observed in Warner Bratzler shear force values for longissimus dorsi (4.08 vs. 3.46 kg), triceps brachii (3.76 vs. 3.77 kg), semitendinosus (4.68 vs. 4.28 kg), or semimembranosus (4.52 vs. 4.42 kg) when comparing Exercise vs. Sedentary treatments. In addition, no differences (P > 0.05) were detected for any saturated, monounsaturated, polyunsaturated or total fatty acid concentration from any of the 4 muscles tested. In conclusion, moderate forced exercise did not affect pH measurements, Warner Bratzler shear force values, fatty acid concentrations, or L* values. Exercise cattle showed higher a* values and lower b* values compared with Sedentary cattle, indicating a change in instrumental color.

Keywords: Cattle, Exercise, Meat

Effects of pea chips on pig performance, carcass quality and composition, and palatability of pork

Effects of pea chips on pig performance, carcass quality and composition, and palatability of pork

Pea chips are produced as a by-product when field peas are processed to produce split peas for human consumption. The objective of this experiment was to test the hypothesis that inclusion of pea chips in diets fed to finishing pigs does not negatively influence pig growth performance, carcass composition, and the palatability of pork. A total of 24 barrows (initial BW: 58.0 ± 6.6 kg) were allotted to 1 of 4 treatments and fed early finishing diets for 35 d and late
finishing diets for 35 d. A corn–soybean meal (SBM) control diet and 3 pea chips containing diets were formulated within each phase. Pea chips replaced 33.3, 66.6, or 100% of the SBM in the control diet. Pigs were housed individually and all pigs were sacrificed at the conclusion of the experiment. Overall, there were no differences in final BW, ADFI and G:F of pigs among treatments; but, there was a quadratic response in ADG \((P=0.04)\) with the smallest value observed for pigs fed the control diet. Dressing percentage linearly decreased \((P=0.04)\) as pea chips replaced SBM in diets; but, there were no differences among treatments in HCW, LM area, 10th rib back fat, lean meat percentage, and marbling. Likewise, \(\text{pH}\) in loin and ham, drip loss, and purge loss were not influenced by treatment. However, there was a quadratic response \((P=0.08)\) in 24-h \(\text{pH}\) in the shoulder with the smallest value present in pigs fed the diet in which 66.6% of the SBM was replaced by pea chips. Subjective LM color and JCS scores were reduced \((\text{quadratic}, P=0.03\) and \(P=0.05\), respectively\) and LM \(b^*\) values and hue angle were increased \((\text{quadratic}, P=0.09\) and \(P=0.10\), respectively\) when pea chips replaced SBM in the diets. Ham \(L^*\) \((\text{quadratic}, P=0.04), a^*\) \((\text{linear}, P=0.02), b^*\) \((\text{quadratic}, P=0.07),\) color saturation \((\text{linear}, P=0.02),\) and hue angle \((\text{quadratic}, P=0.05)\) were increased when pea chips replaced SBM. However, there were no differences in shoulder and fat color. Moreover, cook loss percentage, shear force, juiciness, and pork flavor of pork chops were not different among treatments; but, tenderness of pork chops linearly decreased \((P=0.04)\) as SBM replaced pea chips. It is concluded that all the SBM in diets fed to growing-finishing pigs may be replaced by pea chips without negatively influencing growth performance or carcass composition. However, pigs fed pea chips will have pork chops and hams that are lighter in color and chops may be less tender if pigs are fed pea chips rather than corn and SBM.

Keywords: Beef quality, Fatty acid, Shelf life characteristics

Effect of high protein dried distillers grains used in beef cattle finishing diets on fatty acid profile, and retail shelf life in fresh and further processed products

J. M. Popowski*, J. M. Kelzer, G. I. Crawford, A. DiCostanzo, R. B. Cox, University of Minnesota, Twin Cities, United States

Angus steers \((n=48)\) were individually fed one of 3 dietary treatments in the finishing phase that included a conventional corn based finishing diet (CON); a treatment containing 35% dried distillers grains with solubles replacing dry rolled corn (BPX); and a treatment containing 35% high protein dried distillers grains replacing dry rolled corn (HP). After 118 d on treatment, cattle were humanely harvested at a commercial abattoir and hot carcass weight, 12th rib back fat, percent kidney pelvic heart fat, ribeye area, marbling score, USDA yield grade and quality grade were evaluated. Strip loins (IMPS #180), shoulder clods (IMPS #114), and inside rounds (IMPS #169) were removed 24 h postmortem and used for further analysis. Packaging purge loss of the inside round, strip loin and shoulder clod was calculated after transport and further fabrication. Steaks were serially cut, 2.54 cm thick, from the anterior end of each strip loin. Drip loss was evaluated for the first steak by suspending for 24 h at 4 °C in a controlled atmosphere. Duplicate steaks were cooked to an internal temperature of 71 °C, cooled to room temperature, cored and evaluated for Warner-Bratzler shear force. Dressing percent was not different among treatments \((P=0.22)\). Hot carcass weight, 12th rib back fat, and percent kidney pelvic heart fat were similar among treatments \((P=0.54, 0.54, 0.18, \text{and } 0.35 \text{ respectively})\). Ribeye area was similar \((P=0.57)\) and averaged 78.1 cm\(^2\) for all treatments. Average USDA yield grades were similar \((P=0.54)\) for CON, BPX, and HP \((2.56, 2.75, \text{and } 2.69 \text{ respectively})\). Marbling scores \((\text{where } 500 = \text{small}, 600 = \text{modest})\) were not different \((P=0.26)\) across treatments. Fabrication loss was not different across treatments for the inside round, strip loin, and shoulder clod \((P=0.20, 0.36, \text{and } 0.20, \text{respectively})\). Mean drip and purge losses were similar across treatments \((P=0.49 \text{ and } 0.16, \text{respectively})\). Mean shear force values
for CON, HP and BPX did not differ among treatments ($P=0.25$) and averaged 2.54, 2.37, and 2.88 kg, respectively. Results indicate that beef cattle finished on diets containing high protein dried distillers grains may successfully replace up to 35% of corn grain in feedlot diets and not affect carcass characteristics, moisture loss, and shear force of fresh beef products.

Keywords: Beef quality, Carcass characteristic, Moisture loss

Qualitative attributes of nationally available grass-fed beef
L. N. Euirch,a, C. R. Raines,b B. N. Coursera, J. L. Cappera, A. N. Gipea, aThe Pennsylvania State University, University Park, United States, bWashington State University, Pullman, United States

The objective of this study was to assess the variability of qualitative attributes associated nationally available grass-fed beef, including: product cost, distance traveled, distribution CO2 emissions, uncooked color for different bloom times, and cooked color and tenderness at different endpoint temperatures. Frozen ground beef (GB, 1000 g per vendor) and beef longissimus lumborum steaks (LL, 4 per vendor) were purchased from online grass-fed beef vendors (n=15) from the United States and shipped to the Penn State Meats Laboratory via air freight. Only beef from vendors willing to provide per vendor) were purchased from online grass-fed beef vendors to calculate possible CO2 emissions associated with product shipment, and samples were stored at 21.9±3.5, respectively. The bloom time of uncooked GB patties were 10.2±2.5, 10.1±4.0, 9.5±2.3, and for GB patties were 19.7±4.1, 18.8±2.9, 18.4±3.1, 18.7±1.8, and for GB patties were 13.5±3.5, 12.2±3.8, 9.5±2.3, and 7.9±1.8, and for GB patties were 19.7±4.1, 18.8±2.9, 18.4±3.1, 18.7±3.8, respectively. The WBFS values for endpoint temperatures of 60, 65.5, 71, and 76.6 °C for LL steaks were 13.5±3.5, 12.2±3.8, 9.5±2.3, and 7.9±1.8, and for GB patties were 20.6±5.6, 22.6±3.5, and 21.9±3.5, respectively. The α* values after cooking to 60, 65.5, 71, and 76.6 °C for LL steaks were 11.4±2.5, 15.6±3.2, and 16.6±3.2, and of uncooked GB patties were 20.6±5.6, 22.6±3.5, and 21.9±3.5, respectively. The α* values after cooking to 60, 65.5, 71, and 76.6 °C for LL steaks were 6.7±1.2, 8.0±2.6, 7.5±1.6, and 8.5±3.5 kg, and for GB patties were 10.2±2.5, 10.1±4.0, 9.5±2.3, 9.1±2.3 kg, respectively. Survey data indicate that online-purchased grass-fed LL steaks and GB are considerably more expensive per kg than conventional counterparts. CO2 emissions per kg of beef if shipped overnight can be ≥200% more than beef shipped by truck, though may be required when niche products are direct marketed. Proponents of grass-fed beef beef report that it cooks differently than grain-fed beef; however, this survey reveals considerable variation of cooked color and tenderness among grass-fed products. Food miles and CO2 emissions are emergent food qualities, neither of which is supported by products shipped via air. Grass-fed beef introduces more variation into a beef system that targets product consistency and uniformity.

Keywords: Grass-fed, Production system, Environment

Testing for the presence of Salmonella in dog treats through in plant validation, inoculation, and cooking
P. Danielsa, M. Miller, A. Laury, G. Loneragan, M. Brashears, C. Brooks, Texas Tech University, Lubbock, United States

Salmonella is a continual problem within the pet food industry. The objective of this experiment was to determine the prevalence of Salmonella in various dog treats through an in-plant analysis study and an inoculation challenge study. For the in-plant analysis study, 30 raw and cooked samples of lamb lung cubes, taffys (weasands), flossies (steer pizzles), and jumbo flossies were delivered to the Texas Tech University Food Microbiology Laboratory on ice and analyzed by the FDA approved BAX system method for detection of Salmonella. For the raw products: 7 of 30 taffys, 0 of 30 lamb lung cubes, 26 of 30 flossies, and 29 of 30 jumbo flossies were positive for Salmonella. For the cooked products, 1 of 30 taffys was positive for Salmonella, while the other products had no positive cooked samples. For the inoculation challenge study, 2 different lots of raw samples of liver tripe steaks, lamb lung cubes, taffys, and flossies were delivered on ice. Fifteen samples from each lot of products were inoculated with a 4-strain Salmonella cocktail at 10^5 cfu/g. After a 30 min attachment period, 5 control samples were sampled for initial concentration, while the rest were cooked in accordance with the standard cooking procedure established by the company. Before and after cooking samples were serially diluted and plated onto xylose lysine deoxycholate agar (XLD) with a tryptic soy agar overlay for injured cells. If no colonies were present on XLD plates, detection was performed by the BAX system and immunomagnetic separation (IMS) with Remel Salmonella agglutination kit for confirmation. Statistical analysis was performed using SAS program with a 0.05 α-value for significance. Lamb lung cubes were significantly reduced by 2.85 logs with one positive sample after cooking (<10 cfu/g present) (P<0.001). Liver tripe steaks were significantly reduced by 3.11 logs with no positive samples after cooking (P<0.001). Taffys were significantly reduced by 2.85 logs with no positive samples after cooking (P<0.001) and the flossies were significantly reduced by 5.47 logs with no positive samples after cooking (P<0.001). Based on both studies it was recommended that the taffy’s processing/ cooking procedure should be modified to ensure safeness in case of high contamination. Although no positive raw samples were found in the in-plant analysis study, the inoculation challenge study suggests that the processing and cooking procedure in case a high level of contamination with Salmonella occurred.

Keywords: Salmonella, Dog treats

Pork quality and carcass composition of market hogs farrowed from gilts provided exercise during gestation
E. K. Harrisa, K. A. Vonnahmeb, D. S. Buchananb, D. J. Newmanb, E. P. Berga, bNorth Dakota State University, Fargo, United States, cUniversity of Minnesota, St. Paul, United States

The transition of the swine industry from gestation stalls to group housing has led to research evaluating the impact of exercise on gestating females and their subsequent offspring. The objective of this study was to determine the effects of exercise during gestation on the subsequent offspring growth, carcass composition, and ultimate pork quality. Yorkshire gilts of similar body composition were housed in individual stalls during gestation (CON; n=4) or housed in individual stalls but also exercised 30 min, 3 times per week (EX; n=4) from d 40 to 105 of gestation. Exercise was monitored by the number of steps taken during each exercise bout and gilts were allowed to move at their own pace. The heaviest and lightest boar and gilt piglets in each
The objective of this work was to study selenium deposition in different organs of sheep supplemented in 2 chemical forms: sodium selenite and seleno-methionine. Cannulas were inserted in the duodene and rumen sections in 20 animals (30 kg, 6 mo). The lambs were fed for 90 days, with animal batches being supplemented with 0.3 ppm Se: (T1) as sodium selenite, and (T2) as seleno-methionine. A control group was left without selenium supplementation. Treatments were administered...

Selenium in muscular, renal, hepatic, cardiac and blood tissues of sheep supplemented with sodium selenite and seleno-methionine R. Cruz-Monterrosa*, E. Ramirez-Bribiesca*, I. Guerrero-Lagarreña, "Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de Mexico, Mexico, "Universidad Autonoma Metropolitana, Iztapalapa, Distrito Federal, Mexico

The objective of this work was to study selenium deposition in different organs of sheep supplemented in 2 chemical forms: sodium selenite and seleno-methionine. Cannulas were inserted in the duodenum and rumen sections in 20 animals (30 kg, 6 mo). The lambs were fed for 15 d with diets supplemented with 0.1 ppm selenium. After this time, 2 10-animal batches were supplemented with 0.3 p.p.m. Se: (T1) as sodium selenite, and (T2) as seleno-methionine. A control group was left without selenium supplementation. Treatments were administered...

Fatty acid profile of meat obtained from DHA/EPA and CLA-supplemented pigs J. Aguilar-Guggenbuhl a,*, D. Mota-Rojas b, M. E. Trulillo-Ortega a, G. Trejo-Aguilar a, I. Guerrero-Lagarreña a, b, Universidad Autonoma Metropolitana Iztapalapa, Mexico, Distrito Federal, Mexico, Universidad Autonoma Metropolitana Xochimilco, Mexico, Distrito Federal, Mexico, Universidad Nacional Autonoma de Mexico, Mexico, Distrito Federal, Mexico

The objective of this work was to study the fatty acid profile of pigs fed with diets supplemented with n−3 fatty acids (docosapentanoic, DHA, and eicosapentanoic, EPA, acids) and conjugated linoleic acid (CLA). Thirty castrated males, 54 kg, were randomly assigned to 4 supplementation treatments: 1) DHA/EPA; 2) CLA; (DHA/EPA)+CLA; 4) blank. The animals were supplemented for 8 weeks: 4 weeks with 2.7 g EPA, 1.8 g DHA, 15 g CLA, and 4 weeks with 3.6 g EPA, 2.4 g DHA, 20 g CLA. They were then stunned and slaughtered; 2 h postmortem, samples were taken from adipose tissues (renal, pericardial, mesenteric and dorsal) and methylated by reflux using 0.5 N NaOH-methanol and 12% boron trifluoride-methanol. The methylated fatty acids were and analyzed in a gas chromatograph (Agilent Technologies 6890 N Network GC System) coupled to a mass spectrometer detector (Agilent Technologies 5975B VL MSD). Fatty acids from 10 to 22 C atoms, including DHA, EPA and CLA, were identified in animals supplemented with DHA/EPA and (DHA/EPA)+CLA. DHA and EPA concentrations showed no significant differences for these 2 treatments (P=0.107 and 0.32 for DHA and EPA, respectively). Seven CLA isomers were also found in animals supplemented with (DHA/EPA)+CLA and CLA. However, concentration of isomer 9-cis,11-trans, the most metabolically active CLA form, depended on the anatomical origin of fat (P=0.0084). It was concluded that supplementation of pig diets with CLA and EPA/DHA resulted in the inclusion and sterilization of these human health-related long chain fatty acids in pork, even being molecules not synthesized de novo in pork adipose tissue.

Keywords: DHA/EPA, CLA, Pig-fat

Investigating composting as a viable means of disposing of goat tissue resulting from the harvest and fabrication process L. A. Weber, J. M. DeRouchey, T. A. Houser, G. R. Skaar, C. M. Steele, C. M. Highfill, Kansas State University, Manhattan, United States

The objective of this study was to determine the effectiveness of composting as a way of disposing of tissues resulting from the harvest and fabrication of udder do ages. The by-products from the harvest of 18 udder do ages were composted in a grass/straw mixture over a 90 d period at the Kansas State University Composting Facility. Goat by-products were randomly assigned 1 of 3 treatments: bones only, offal+head, and whole (bones, skull, and offal) piles. Additionally, the pile location was randomly selected to block for variability caused by pile placement. Temperature measurements were taken weekly and decomposition scoring was completed at 30, 60, and 90 d. Separate decomposition scores were assigned by 5 panelists for bones, offal+hide, and skulls at 30, 60 and 90 d. Decomposition was measured on a scale of 1–5 with 1, indicating complete decomposition and 5, indicating no decomposition. All of the treatments increased (P<0.05) in temperature from wk 1 to wk 7 but began to decrease in temperature after wk 9. For wk 1, wk 2, wk 4, and wk 5, temperatures for bone piles were less than (P<0.03) offal+head and whole pile treatments, but were not different (P>0.05) than the other treatments for the rest of the time periods measured. Whole piles had the greatest mean temperature for any single wk measurement of 54 °C at wk 9 and the greatest (P<0.03) mean temperature of 46 °C for the entire 12 wk composting period compared with 44 °C for offal+head piles and 40 °C for the bone only piles. Bone decomposition progressed over the 90 d study; at d 60, bones in the whole pile decomposed to a greater degree (P<0.01) than bone only piles. Similarly, skulls decomposed over the 90 d period with no soft tissue present at the end of the composting period. At d 60 and 90, skulls in whole piles were more decomposed (P<0.02 and P<0.01, respectively) than skulls in offal+head piles. Soft tissues including meat, fat, offal, and hides decomposed at the fastest rate with no differences (P>0.19) between treatment types and complete disappearance by the end of the composting period. Although no soft tissue remained on any of the skulls or bones at the end of the composting period, none of the entire skull or bone pieces were completely decomposed. In summary, composting udder do age tissues for 90 d resulted in complete decomposition of all soft tissues. However, complete decomposition of bones or skulls was not achieved.

Keywords: Compost, Decomposition, Goat

Pork quality, Exercise, Carcass composition

Meso- and decomposition scoring was completed at 30, 60, and 90 d. Decomposition was and decomposition scoring was completed at 30, 60, and 90 d. Decomposition was ultimately in...
directly to the rumen cannula, during the 10 d of adaptation and 5 d of sampling. Blood samples were extracted from the jugular vein; at the end of the study time, animals were slaughtered, samples taken from the skeletal muscle, heart, liver and kidney, and kept at −20°C until analysis. Mean comparisons were carried out by the least significant difference method. Differences in selenium concentration among the studied organs were analyzed by t-student tests (P ≤ 0.05). The results showed that after 5 d supplementation blood selenium increased 2-fold (P ≤ 0.01) for both sodium selenite and seleno-methionine. However, after 15 d supplementation, selenium in blood showed no significant difference as compared with the fifth day in the same tissue, but concentrations dramatically increased in other organs. The highest selenium concentration was observed in the striated muscle, followed by liver, kidney and heart (P ≤ 0.05). This can be explained by the fact that supplements are first detected in blood; later, selenium concentration in blood remained constant and this element finds other pathways for deposition, such as the striated muscle and liver. Due to the lower commercial cost of sodium selenite and having selenium the same deposition for both chemical forms it was concluded that, to improve selenium concentration in meat and viscera aimed for human consumption, sodium selenite is recommended.

Keywords: Sodium selenite, Seleno-methionine, Rumen

Effects of postmortem calcium chloride injection on meat quality traits of steaks from cattle fed with zilpaterol hydrochloride

Two experiments were conducted to determine the effects of Zilpaterol hydrochloride supplementation (ZH; 6.8 g/ton on a 90% DM basis for 30 d) and calcium chloride injection (CaCl2; 200 mM at 5% wt/wt at 72 h postmortem) on palatability traits (Exp. 1) and shelf-life (Exp. 2) of beef strip loin steaks. USDA Select strip loins were obtained from control (non-ZH-fed) and ZH-fed cattle carcasses (Exp. 1 = 40; Exp. 2 = 20) and right and left sides were selected alternatively to serve as a control (non-injected) or CaCl2-injected and immediately vacuum packaged for storage at 2°C. For Exp. 1, at 7 d postmortem strip loins were portioned into steaks, vacuum packaged and aged until 28 d for Warner-Batzler shear force values (WBSF; 7, 14, 21, and 28 d) and trained sensory analysis (14 and 21 d). For Exp. 2, treatments were evaluated at 7, 14, and 21 d postmortem using color analysis (Hunter L*, a*, b*), myoglobin reducing activity (MRA) and lipid oxidation (TBARS) on steaks which were PVC-overwrapped and displayed for 3 d at 3°C during all postmortem aging periods. Results from experiment 1 indicate both feeding groups and injection treatments diminished their WBSF values as days of postmortem aging increased; however, WBSF values for ZH-fed steaks were greater than non-ZH-fed steaks (P < 0.05), and CaCl2-injected steaks had lower WBSF values than non-injected steaks (P < 0.05) during all postmortem aging periods. Trained panelists gave a lower tenderness score to ZH-fed steaks than non-ZH-fed steaks at 14 d and 21 d. Contrary, the injection of CaCl2 improved (P < 0.05) tenderness scores and flavor intensity, but with trend to be slight off-flavor (metallic) compared with non-injected steaks at 21 d. Results from experiment 2 indicate ZH-fed steaks showed better initial red color and more stable red color during retail display than non-ZH-fed (P < 0.05); though there were no differences in discoloration over aging (P = 0.06). Non-injected steaks had better initial color than injected steaks (P = 0.005). Nonetheless, at 14 d of aging, injected steaks started to be more discolored and exhibited less color stability than non-injected steaks (P = 0.0001). These results were in accordance with the instrumental color results. No differences in MRA values were noted between feeding groups (P = 0.2); while, injection treatments groups diminished their MRA values as days of postmortem aging increased, but CaCl2-injected steaks exhibited greater reducing ability than their counterpart. No differences in TBARS values existed between feeding groups (P > 0.05); but, injected steaks showed an increment of lipid oxidation compared with non-injected steaks (P = 0.05; 0.439 vs. 0.336 mg/kg). Overall, the postmortem injection of CaCl2 solution to either ZH-fed or non-ZH subprimals can improve beef steak tenderness; although can be detrimental effects on shelf-life when aging is extended beyond 14 d.

Keywords: Zilpaterol hydrochloride, Calcium chloride, Tenderness and shelf-life

Technological characteristics of pork burger as influenced by tiger nut milk liquid co-product

Many efforts have been made to improve the safety, quality, stability and nutritional properties of burgers because consumer demand for fast food has been increasing rapidly in the recent years. The valued added products (intermediate food product) obtained from co-products is an interesting practice that can contribute to obtain more benefits to all food industries. Tiger nuts or chufas (Cyperus esculentus) are tubers mainly used to produce Horchata de chufa (tiger nuts milk), yielding a high quantity of co-products (solids and liquids). The tiger nut milk liquid co-product (TLC) could be used as an ingredient for the food industry. Its physicochemical properties allow its use as a substitute of water addition to foods. However, due to its high microbial load, it requires pasteurization prior to its addition to foods. TLC is also a valuable source of natural antioxidants (phenolic compounds). The objective of this work was to study the effect of the water formula replacement by TLC on the chemical and physicochemical characteristics of pork burgers. Three independent replicates of each batch were prepared. A simple traditional formulation was used to obtain a base batter as follows (percentages of non-meat ingredients are related to meat): 55% lean pork meat, 45% pork backfat, 18% (w/w) water (ice), 1.5% (w/w) sodium chloride, 0.2% white pepper. This mixture was divided into batches and TLC substituted water in the formulation of pork burgers. Chemical composition, physicochemical, and cooking characteristics of burgers were evaluated. TLC addition caused a decreased (P < 0.05) in water activity (from 0.991 to 0.978). No differences (P > 0.05) were observed in pH, moisture, fat, protein and ash content among in the raw burger. Cooking yield, fat and moisture retention, diameter reduction and thickness increase were measured to determine the influence of adding TLC on pork burger formulations. Results showed that formulation with TLC added had the highest cooking yield (P < 0.05; 82.29% vs. 90.73%), fat and moisture retention (83.99% and 69.17% vs. 88.62% and 83.40%) and thickness increase (10.20% vs. 13.90%); also was observed a smaller diameter reduction (P < 0.05; 15.49% vs. 12.97%) in the pork burger. TLC addition caused, in the cooked burger, a texture improvement; because hardness, gumminess and chewiness were lower (P < 0.05) in the samples with TLC (12.00 N; 2.43 N and 12.58 N mm, respectively) than in burger formulated with tap water (21.60 N; 5.18 N and 27.48 N mm, respectively). Cooked pork burgers...
elaborated with TLC had better cooking characteristics (higher cooking yield, fat and moisture retention and thickness increase and lower diameter reduction) and improved its texture. Utilization of TLC, as a substitute of water, in the formulation of pork burgers appears to be a valuable alternative.

Keywords: Pork burger, Tiger nut, Technological properties

Shelf life of five meat products displayed under light-emitting diode or fluorescent lighting

K. S. Steele a,⁎, M. J. Weber a, E. A. E. Boyle a, M. C. Hunt a, A. S. Lobaton-Sulabo b, C. Cundith b, Y. H. Hiebert b, K. A. Abrolat c, J. M. Attey b, S. D. Clark c, D. Johnson c, T. L. Roenbaugh c, ⁎Kansas State University, Manhattan, United States, ⁎Cargill, Wichita, KS, United States, ⁎Ingersoll Rand Climate Solutions, Bridgetown, MO, United States

Light-emitting diode (LED) lighting used in retail display cases offers economical savings in energy use and generates less heat compared with fluorescent (FLS) lighting. This study compared the effects of LED and FLS lighting on visual and instrumental meat color and shelf-life properties of 5 meat products displayed in 2 Hussmann retail display cases set up with the same operational and temperature profiles so that lighting was the single variable. For each treatment, 24 enhanced pork loin chops, 36 beef loin steaks, 24 ground beef, 24 ground turkey, and 36 beef inside round steaks were used. Pork loin chops and beef loin steaks were received in mother bags containing 0.15% CO2–0.10% O2–25% CO2–74.75% N2. Beef inside round steaks were cut fresh from sub-primals before display. Ground turkey was displayed in high-oxygen (75% O2 and 19% CO2) modified atmosphere packaging (MAP) while the remaining products were displayed on foam trays with moisture absorbent pads and overwrapped with polyvinyl chloride film. Visual color, instrumental color, colorometric plate counts (APC), Enterobacteriaceae counts (EB), internal product temperatures, case temperatures and thiobarbituric acid reactive substances (TBARS) values were measured. As expected, visual color scores of the 5 meat products indicated color deterioration increased as display time increased. Beef loin steaks, ground beef, and the superficial portion of beef inside round steaks had less (P<0.05) visual discoloration under LED lighting than FLS. For instrumental color, pork loin chops under LED lighting had higher (P<0.05) L* values. The superficial and deep portions of beef inside round steaks were slightly (P>0.05) more intense red under LED lighting. For all other products, no differences (P>0.05) were found for a* values or saturation indices. Lighting type had no effect (P>0.05) on APC or EB populations except for pork loin chops which had an interaction between lighting type and day of display for APC populations. At the end of display, chops under LED lighting had lower APC populations than FLS. As expected, APC populations increased as display time increased for pork loin chops, ground beef, ground turkey, and beef inside round steaks. APC populations for beef loin steaks did not change (P>0.05) during display, however display life was limited due to initial postmortem age. EB populations increased (P<0.05) for pork loin chops, ground beef and ground turkey as display time increased. The internal temperature of all products, except beef loin steaks, was lower (P<0.05) in the LED case. Compared with the LED case, FLS case temperatures were higher (P<0.05) by 0.56 to 1.11 °C over the duration of the study. Pork loin chops, ground turkey, and beef inside round steaks had higher (P<0.05) TBARS values under LED lighting, but lighting type did not affect (P>0.05) TBARS of beef loin steaks or ground beef. LED lighting results in lower display case temperatures, lower internal product temperatures, and extended color life; however, lipid oxidation was increased in some cuts under LED lighting.

Keywords: Lighting, Color, Shelf life

Effect of dietary selenium supplementation on color shelf-life of beef Psoas major steaks from maturing heifers

Poulson Joseph a,⁎, G. Rentfrow a, L. L. Slaughter a, K. M. McClelland a, S. P. Suman a, J. A. Boling a, K. M. Brennan a, J. C. Matthews a, ⁎Department of Animal and Food Sciences, University of Kentucky, Lexington, United States, ⁎Center for Animal Nutrigenomics & Applied Animal Nutrition, Alltech Inc., Lexington, KY, United States

The color stability of beef during retail display is muscle-specific. Psoas major (PM) is an economically important muscle which is color-labile. Dietary supplementation of anti-oxidants can be utilized to retard meat discoloration during retail display. Therefore, the objective of this study was to evaluate the effect of dietary supplementation of different dietary selenium (Se) sources on meat color quality attributes of PM steaks in growing/maturing beef heifers individually fed to gain 0.5 kg/d. Twenty-eight Angus-cross heifers were assigned to 4 Se treatments (n = 7) for 226 d and throughout an 8-week harvest period. The basal diet contained 0.08 mg Se/day. Mineral supplements provided no Se (control, CON), 3 mg Se/day as inorganic (sodium selenite, ISe), organic (Sel-Plex, OSe), or 50/50 ISe/OSe (MIX). Heifers were humanely harvested at the University of Kentucky Meat Laboratory with treatments equally distributed over days of kill. After 24-h storage at 4 °C, PM muscle was excised from each carcass, fabricated into 6 1.5-cm steaks, and assigned to 0, 5, and 9 storage days. PM steaks were placed on styrofoam trays, overwrapped with polyvinyl chloride film, and stored under constant, cool white fluorescent lighting (1300 lx) at 4 °C. Instrumental color (CIE L*, a*, b*), Hue, Chroma, R630/580 (MRA) were measured with a Hunterlab LabScan XE colorimeter. In addition, metmyoglobin reducing activity (MRA), lipid oxidation (TBARS), and pH was determined on the respective storage days. Data were analyzed using ANOVA and mean separation procedures of the general linear model and the differences among means were detected at the 5% level using the least significant difference test. There was no effect (P>0.05) of Se supplementation on L*, a*, or b*, Hue, Chroma, R630/580, MRA, TBARS, and pH of PM steaks during 9 d of simulated retail display. However, a* and b* values, Hue, Chroma, R630/580, and MRA decreased linearly by day (P<0.05) in all dietary treatments during storage, indicating surface discoloration. On the other hand, TBARS increased (P>0.05) progressively with storage days in PM steaks. Our results suggested that addition of 3 mg/d of Se to a basal diet which contained 0.08 mg Se/d to maturing beef heifers gaining 0.5 kg/d did not influence meat color-stability or lipid oxidation of PM steaks.

Keywords: Dietary selenium, Psoas major, Meat color

Fresh pork properties of pigs fed ractopamine hydrochloride and immunocastrated boars

R. Formighieri a,⁎, A. Martins a, E. T. F. Silveira b, G. B. Magenis c, P. E. de Felicio a, ⁎State University of Campinas, Campinas, Sao Paulo, Brazil, ⁎Meat Technology Centre, Institute of Food Technology, Campinas, Sao Paulo, Brazil, ⁎Ourofino Agrobusiness, Cravinhos, Sao Paulo, Brazil

The objective of this study was to compare fresh pork properties among sex condition, and diets with and without ractopamine hydrochloride (RAC). Sixty animals (Agroceres PIC—AGPIC 337 sires × CB 22 dams) from a commercial farm were grouped in females (FE, n = 20), physically castrated (PC, n = 20) and immunocastrated male pigs (IM, n = 20), fed or not with RAC (7.5 mg/kg, Ractosuin, Ourofino Agrobusiness) for the final 21 d before slaughter. The animals were separated in 6 treatments with 10 pigs for each combination of dietary and sex. The boars designated to be immunocastrated received 2 doses of vaccine according to
recommendation (Improvac, Pfizer Animal Health). After chilling, carcass pH24b was determined in the M. semimembranosus (SM) using a Meat pH Meter (Hanna, Model H199163). Pork loin was deboned, and the M. longissimus dorsi (LD) were evaluated for objective color (L*a*b*) using a Minolta Chromameter (CR-400; Konica Minolta Sensing, Inc.). For drip loss, LD samples (80 to 100 g) were placed in a netting and suspended in an inflated bag for 48 h storage period at 4 °C. LD was sliced into a 2.54-cm-thick weighed and cooked on a clamshell style grill to an internal temperature of 72 °C, thus samples were reweighed to determine cooking loss which was expressed as a percentage of the initial sample weight. Texture was determined using the 3 mm thick Warner-Batzler shear force (WBSF) attachment to the TAXT2i Texture Analyzer. The experiment was carried out as a factorial (2 × 3) arrangement with RAC diet (0 and 7.5 mg/kg) and sex condition (FE, PC and IM). Data were analyzed by ANOVA using the GLM procedure of SAS (SAS Inst., Inc., Cary, NC) with a model including RAC, sex, and their interactions. Least squares means were reanalyzed with the TAXT2i Texture Analyzer. The experiment was carried out as a factorial (2 × 3) arrangement with RAC diet (0 and 7.5 mg/kg) and sex condition (FE, PC and IM). Data were analyzed by ANOVA using the GLM procedure of SAS (SAS Inst., Inc., Cary, NC) with a model including RAC, sex, and their interactions. Least squares means were separated by the PDIFF, and statistical differences were declared at P ≤ 0.05 level. There was no RAC × sex (P > 0.05) interaction for any of the pork properties studied. RAC did not influence the pH24b values of the SM (P > 0.05). The pH24b was higher (P < 0.05) in FE (5.60) than PC and IM (5.43) pigs. RAC supplementation did not affect (P > 0.05) objective color. Longissimus muscle from PC presented higher a* mean values (6.46, P < 0.05) than FE (5.59, P < 0.05), but both did not differ from IM (6.33, P > 0.05). Drip loss was not affected by either RAC treatment or animal sex (P > 0.05). Animal sex condition did not affect cooking loss and WBSF (P > 0.05). LD from RAC fed pigs presented higher (P < 0.01) cooking loss and WBSF means (23.83% and 3.42 kgf) than control (20.14% and 2.91 kgf). Animal sex condition had no important impact on fresh pork properties in this research. Immunocastrated males did not differ from physically castrated males. The addition of RAC on diet of finishing pigs increased cooking loss and toughness of pork.

Keywords: Ractopamine, Fresh pork properties, Immunocastration

The use of calcium lactate to improve quality in beef round muscles in high-oxygen modified atmosphere packaging

J. K. Grubbs1,2, A. N. Fritchena, Y. H. Kimb, S. M. Cruzena, S. M. Lonerengan, E. Huff-Lonerengan, Iowa State University, Department of Animal Science, Ames, United States, 3AgResearch MIRinz, Hamilton, New Zealand

The purpose of this study was to examine the effect of calcium lactate on tenderness of beef round muscles stored in high-oxygen modified atmosphere packaging (HiOX) (80% O2/20% CO2). HiOX packaging has been shown to increase the toughness of some meat products. It was hypothesized that calcium lactate could limit this negative effect of HiOX packaging by serving as an activator of proteolysis and an antioxidant. Ten beef steers were harvested; at 24 h postmortem the deep semimembranosus (DSM) (inner 1/4 of the muscle), superficial semimembranosus (SSM) (outer 1/4 of the muscle), semitendinosus, and adductor in the round were removed. Each round was randomly assigned to either vacuum (VAC) or HiOX packaging. Each muscle was divided into 3 equal sections and randomly assigned one of 3 treatments: water injected control (CON), 3 mM sodium tripolyphosphate injected control (STP), and 200 mM calcium lactate injection, followed by a 20 min rest, and then injection with 3 mM phosphate (CAL). Because of its smaller size, the adductor was cut into 2 sections, CAL and STP. Steaks (2.54 cm) were then cut and vacuum packaged. After 9 d of storage, steaks assigned to HiOX were repackaged according to assigned treatment were displayed for 7 d under white light at 1 °C. At the end of storage (1, 9, or 16 d storage) star probe measurement of instrumental tenderness, sensory tenderness (d 16 storage only), and troponin-T and desmin degradation (30 kDa) were determined for each steak. Titin degradation was determined in the semitendinosus. At 16 d storage, CAL improved (P < 0.05) sensory tenderness in the HiOX DSM steaks compared with CON and STP steaks. CAL did not improve tenderness of HiOX SSM at 16 d storage. Sensory tenderness was increased (P < 0.05) in CAL treated VAC SSM compared with CON. At 9 d storage both CAL DSM and SSM had lower (P < 0.05) star probe values than CON or STP groups. Star probe at 16 d storage was decreased in CAL VAC semitendinosus while all other steaks injected with CAL showed no difference in star probe at 16 d storage. CAL tended to increase (P = 0.063) troponin-T degradation in the DSM at 9 d storage, while no effect of CAL on troponin-T degradation was observed in the SSM. No treatment differences were observed in titin degradation in the semitendinosus. There was a tendency (P = 0.08) for CAL to increase degradation of titin compared with STP treated semitendinosus cuts stored 1 d. Desmin degradation increased in 9 d CAL DSM steaks while no difference was observed in the SSM, semitendinosus, or adductor. Treatment with CAL resulted in increased

Low-fat wet distillers grains influence beef quality

A. Haack1, C. Calkins, A. S. de Mello Jr., S. Pokhare, L. Senaratne, J. Hergenreder, K. Varnold, T. Carr, G. Erickson, University of Nebraska, Lincoln, United States

Feeding wet distillers grains plus solubles to cattle increases polyunsaturated fatty acids (PUFA) within the lean, which are susceptible to oxidation and compromise shelf life. This study was conducted to determine if a feeding diet containing low-fat wet distillers grains without solubles (LFWWDG) would also compromise beef quality. Forty-five (15 per dietary treatment) USDA strip loins (M. longissimus lumborum) were analyzed for fatty acid profile and color changes during a 7 d retail display period. Dietary treatments included LFWWDG (4.72% fat; fed at 35% DM), traditional wet distillers grains with solubles (TWDGS; 6.91% fat; fed at 35% DM) and a corn-based control diet. The absence of solubles in the LFWWDG diet meant that more DG were fed with this diet than with the TWDGS diet. Four days after simulated retail display, samples from cattle fed LFWWDG had more oxidation than cattle fed TWDGS or control diets. After 5 d, steaks from cattle fed LFWWDG were less red in color (lower a*) and had more visual discoloration than other treatments (P < 0.0001 and P < 0.05, respectively). The L* and b readings were not significantly different (P > 0.05). Samples from cattle fed LFWWDG had approximately 10% more PUFA than samples from cattle fed TWDGS (4.86% vs. 4.46%, respectively, P = 0.08). There was no difference in saturated fatty acids or mono-unsaturated fatty acids among the treatments (P = 0.19, 0.79, respectively). Steaks from cattle fed diets containing WDG (with or without S) had lower percentages (P < 0.05) of 15:0, 16:0, 17:0 and 17:1 (n = 7) and higher percentages (P < 0.05) of 18:1 trans, 18:1a14, 18:2 trans, 18:3 (n = 3) and 20:3 (n = 6) than cattle fed the corn control diet. Steaks from the LFWWDG diet had a larger percentage of 18:2 (n = 6) than the steaks from TWDGS, which had more than the control diet (P < 0.0001). For fatty acids 18:2 cis 9 trans 11 and 20:0, samples from cattle fed LFWWDG were similar with the samples from cattle fed TWDGS and TWDGS were similar to the samples from the control diet (P = 0.02 and 0.05, respectively). These data suggest fatty acids contained within the distillers grains are partially protected from biohydrogenation during digestion, while fatty acids in the soluble fraction are more readily hydrogenated in the rumen. Consequently, diets formulated with LFWWDG tend to stimulate more rapid discoloration compared with TWDGS and corn-based control diet.

Keywords: Beef quality, Wet distillers grains, Fatty acid profile
Impact of hydrochloric/citric acid blend as a pre-grinding intervention on ground beef instrumental color characteristics

Since ground beef processing involves mixing and grinding of beef trim from various animals, the possibility of recontamination poses a risk in the final ground beef product. Therefore, application of pre-grinding antimicrobial interventions can be beneficial to enhance microbial safety of ground beef. However, it is important to understand the impact of pre-grinding interventions on ground beef color properties. Hence, this study was focused on evaluating the instrumental color properties of ground beef processed with trim subjected to novel hydrochloric/citric acid blend based pre-grinding treatments. Inoculated (Escherichia coli and salmonella Typhimurium, 107 cfu/ml) beef trimmings (5 lb/treatment/replicate) were vacuum tumbled for 20 s with 500 mL of selected antimicrobial treatments (replicates = 3). The treatments involved 15% hydrochloric/citric acid blend (Citrollow, CIT) alone or CIT followed by 4% sodium metasilicate (CITNMS), 0.4% cetlylpyridinium chloride (CITCPC), 10% trisodium phosphate (CITTSP) or water (CITW). The un-treated un-inoculated (CON) and inoculated (INCON) controls and treated beef trimmings were ground twice and 200 g from each treatment were placed on individual plastic foam trays with absorbent pads. The packages were over wrapped with polyvinyl chloride film and stored under simulated retail conditions (4 °C). Subsequently, the samples were evaluated for CIE L*, a* and b* values on d 0, 1, 2, 3, 4 and 5 of display using illuminant A/10° observer. On d 0 of display, CITTSP ground beef was more red (P<0.05) compared with INCON and CON samples. CITTSP and CITNMS treatments maintained a similar redness (P>0.05) compared with INCON and CON, respectively on d 1 through 5 of display. On d 0 of display, the hue angle of CITTSP and CITNMS treated ground beef were lower (P<0.05), indicating more redness in color than the rest of the treatments. Further, these treatments continued to maintain a lower hue angle compared with CIT, CITCPC or CITW treatments. Similarly, CITTSP and CITNMS treated samples had more (P<0.05) vivid color compared with all the treatments on d 0 and had similar vivid color to CON and INCON on d 2, 3 and 4 of display. Additionally, the oxymyoglobin proportions (630 nm/580 nm ratio) were highest (P<0.05) in CITTSP compared with all the treatments on d 1 and 2 of display. The ground beef samples were lighter (P<0.05) and more yellowish (P<0.05) on d 0 compared with other days of display. There was no significant (P>0.05) difference in L* during d 1 through 5 of display, however, the intensity of b* reduced (P<0.05) with the time. Findings from this study indicate that use of hydrochloric/citric acid blend along with trisodium phosphate or sodium metasilicate may improve the ground beef redness and extend shelf-life. Therefore, the antimicrobial properties of these agents be may used as potential multiple pre-grinding interventions to enhance ground beef safety without adverse effects on ground beef color.

Keywords: Ground beef, Pre-grinding intervention, Instrumental color

The effects of freeze and thaw rates on retail display and purge loss for beef subprimals

J. Hosch, K. Hergenreder, K. Varnold, A. Haak, L. Senaratne, S. Pokhare, C. Beauchamp, B. Lobau, C. Calkins, University of Nebraska, Lincoln, United States, Colorado Premium, Greeley, United States, IQ Foods, Fayetteville, AR, United States

To evaluate handling methods for frozen beef subprimals, the effects of freezing and thawing rates on retail shelf life and percent purge loss were compared with that of fresh-never-frozen product. There were 6 treatments: fresh–never–frozen 14–day aged (14D), fresh–never–frozen 21–day aged (21D), blast frozen–fast thawed (BFFT), blast frozen–slow thawed (BFST), conventionally frozen–fast thawed (CFFFT), and conventionally frozen–slow thawed (CFST). Three subprimal cuts—ribeye rolls, strip loins, and sirloins were utilized with 3 replicates of 5 samples per treatment (n = 270). Blast freezing occurred by placing spacers between the boxes of meat on pallets at −28 °C with high air velocity while conventional freezing occurred with pallets stacked and placed in a −28 °C freezer with minimal air flow. Fast thawing (internal temperature of −2 °C) occurred by immersion in a circulating water bath (<12 °C) for 21 h and slow thawing occurred over a 2 week period on tables at 0 °C. Thawed subprimals were weighed before cutting steaks from the longissimus thoracis (LT), longissimus lumborum (LL), and glutaeus medius (GM). Steaks were weighed individually, packaged in oxygen-permeable film, and placed in retail display under continuous lighting at 2 °C for 8 d. Color measurements and discoloration scores were obtained daily and steaks were weighed at the end of display to calculate retail and total purge loss. Discoloration data were analyzed for the time at which a steak reached 40% discoloration. Numerically, steaks from the 14D fresh–never–frozen treatment always had the best color stability (discoloration scores and a∗–redness–values). All LL and LT steaks had approximately 4 d to 40% discoloration. All frozen treatments for the LL and GM steaks were equal or superior in color stability to 21D fresh steaks, except for the CFST LL steaks, which discolorated more rapidly. For all subprimals, purge loss during storage/thawing was significantly higher for the slow thawed subprimals (P<0.0001). Fast thawed subprimals were equal or superior to 14D and 21D fresh subprimals (P=0.0001) in storage/thawing purge, likely a result of thawing to subfreezing temperatures. Conversely, during retail display, the greatest purge loss occurred in fast thawed treatments (P=0.0001). Overall, total purge loss (moisture loss during storage/thawing and retail display) was about 5% higher for slow thawed LT and GM compared with 14D product and about 1.8% higher for LL. These data indicate that frozen-thawed beef subprimals are comparable to fresh-never-frozen subprimals in color stability during the first 4 d of retail display. However, total purge loss was increased for slow thawed subprimals. Freezing rate had minimal effects on retail quality.

Keywords: Beef, Freeze, Thaw

Tenderness and nutrient differences of beef from different genotypes

J. Hergenreder, S. Pruitt, G. Erickson, M. Spangler, C. Calkins, University of Nebraska, Lincoln, United States

The objective of this study was to determine tenderness and nutrient composition differences of beef from different genotypes (Angus, Angus × Piedmontese crosses, and Piedmontese). The genotypes had zero (0 C), one (1 C) or 2 (2 C) copies of the myostatin gene with base pair deletions which causes muscle hypertrophy (n = 19, 28, 12, respectively, for steers and 25, 26, and 9 for heifers). All animals were individually fed the same diet. Steers were fed for 190 d and heifers were fed for 114 d. At 3 d post mortem, carcass grading
Factors were determined on all carcasses. Composite samples for nutrient analyses (proximate, lipid and mineral content) were created from 6 longissimus dorsi (LD) steaks and 6 semitendinosus (ST) steaks per genotype for steers. Steaks were trimmed to 1/8th inch of fat before nutrient analyses were conducted. Steaks from both muscles for all carcasses (steers and heifers) were aged for 14 d and Warner-Bratzler shear force values (WBS) were measured. All steaks were cooked on table top grills to 71 °C. The steaks wrapped in oxygen-permeable film and placed in a 4 °C cooler for 24 h. Six cores (1.27-cm diameter) were removed from each steak, parallel with the muscle fiber orientation using a 1.2-cm diameter coring bit. The 0 C samples had significantly more marbling, greater fat thicknesses and smaller ribeye areas (P<0.05) than the 1 C which had significantly more marbling and fat thicknesses with smaller ribeye areas (P<0.05) than the 2 C samples. Steaks from the 0 C heifers (LD and ST) and ST steaks from the 0 C steers had higher (P<0.05) WBS than steaks from the 2 C heifers and steers. Steaks from cattle with 1 C were intermediate in WBS. The steer LD steaks from 2 Ca animals had higher (P<0.05) WBS, by 0.4 kg, than LD steaks from 0 C steers. Moisture and protein levels were higher, with lower fat content and total calories in the 2 C samples when compared with the 0 C and 1 C samples. The 2 C samples had a lower saturated fat and a lower percent of trans and monounsaturated fatty acids than 0 C and 1 C samples. The 0 C and 1 C samples had lower levels of poly-unsaturated fatty acids. The mineral content was comparable between all 3 genotypes. Overall, the samples from the 2 C had the lowest marbling scores and were still comparable to 0 C samples for WBS. The 2 C samples were also higher in protein content and lower in fat content. Genotypes with 2 copies of the myostatin gene were generally leaner and more tender than those with 0 or 1 copy.

Keywords: Myostatin, Warner-Bratzler shear force, Nutrient analysis

Effects of antioxidant application and retail display on sensory, shelf life and oxidative stability of beef striploin steaks

L. M. Batota*, J. A. Canona, K. L. Footea, M. F. Millerb, L. A. Branhama, R. M. Copea, K. W. Bradena, aAngelo State University, San Angelo, TX, United States, bTexas Tech University, Lubbock, United States

Antioxidant utilization is one of the primary mechanisms of quality stability and enhancement in many foods including processed meats. This research was aimed at evaluating the potential case life extension of beef strip-loin steaks applied with 2 approved antioxidant formulations: organic citric acid (CIT) 0.3% solution and synthetic butylated hydroxyanisole/butylated hydroxytoluene combination (SYN) 0.08% solution. Comparisons were made to a control treatment (CON) application of deionized water. Wholesale strip- loins (IMPS # 180; n=32) were obtained from a commercial harvesting facility and selected within a criteria for both quality grade (Low Choice) and yield grade (YG 2.8–3.2) guidelines to minimize strip-loin variation. Strip-loins were vacuum-packed and stored at 2 °C. At postmortem d 14, 21 and 28 strip-loins were removed from vacuum packages and fabricated into 2.54-cm thick steaks. Steaks (n=63) were randomly assigned to one of 3 groups (CON, CIT and SYN) to achieve (n=21) samples/treatment. After treatment was applied utilizing a customized belt line and atomization cabinet, steaks were over-wrapped with polyvinyl chloride film, and placed in retail coffin style display case to simulate retail display conditions for a 5 d period. Visual and objective color was evaluated daily while sensory and TBA samples were removed during display days (DD) 1, 3 and 5. Treatment had effect on both visual and objective lean color especially DD 3–5. There were no effects of treatment on any sensory attributes when data was analyzed (P>0.05). SYN treatment maintained lean color of strip-loin steaks (P<0.05) while CON and CIT exhibited additional discoloration in DD 4 and 5 when compared with SYN within all postmortem aging periods. CON and CIT also contained additional browning in DD 3–5 (P<0.05). CON steaks exhibited higher a* and b* values through DD periods (P<0.05) when compared with either CON or CIT. SYN steaks exhibited higher oxymyoglobin level (P=0.03) and reduced metmyoglobin levels (P<0.05) throughout DD within all postmortem aging periods. Hue values were at higher level (P<0.05) for CON and CIT when compared with SYN through DD 1–5. CON and CIT exhibited increased TBA values on DD 1, 3 and 5 when compared with SYN steaks (P<0.05). Results from this study indicate that SYN antioxidant application to strip-loin steaks prolongs retail display shelf life by maintaining color and reducing rate of lipid oxidation without any negative sensory attributes.

Keywords: Antioxidant, Strip loin, Sensory

Effects of different meat sources and cooking methods on the physicochemical and textural characteristics of low-fat sausages

Y. M. Lee*, H. C. Lee, K. B. Chin, Chonnam National University, Gwangju, South Korea

Processed meats are required to meet the consumer preferences and healthiness. Various researches have been performed to develop the low-fat meat products as healthier foods. This study was performed to investigate the effects of different raw meat sources (beef vs pork) and cooking methods (boiling vs smoking) on the physicochemical and textural properties of low-fat sausages (LFS). Frozen imported beef rounds and fresh domestic pork hams alone or in combination (1:1) were mixed to manufacture the LFS with different cooking methods. Data were compared with beef and pork meats alone or in combination to identify the optimal conditions for LFS. Since all data did not show significant interactions between 2 factors, data were pooled. The fresh pork ham meats alone or in combination with frozen beef round enhanced the cooking loss, most textural properties, and sensory texture and overall acceptance of LFS, as compared with those of LFS with frozen beef round alone. In addition, the LFS containing beef round alone had darker color and more crumble texture than those of pork alone or in combined with beef round. On the other hand, boiling was beneficial to have improved product yields, while the boiling method had less preference in sensory flavor than those of oven smoking. In conclusion, the combination of fresh pork ham and frozen beef round meats at 1:1 ratio was acceptable and frozen imported beef could be used the potential possibility to replace the pork hams as a meat source.

Keywords: Low-fat sausages, Meat sources and cooking methods, Physicochemical and textural properties

Shelf life extension, organoleptic variation, and pathogenic reduction of noni-treated beef patties

W. N. Tapp IIIa, J. W. S. Yanceyb, J. K. Appleb, M. J. Wolfa, A. M. Laurya, J. C. Brooksb, M. M. Brashearsb, M. F. Millerb, aTexas Tech University, Lubbock, United States, bUniversity of Arkansas, Fayetteville, United States

Noni (Morinda citrifolia) has long been used as a homeopathic remedy for ailments, recently there has been much research conducted to learn more of the antioxidant, immune stimulating, and antimicrobial properties of noni. Research has shown that incorporation of antioxidants can enhance color stability; also claims have been made concerning the antimicrobial effects of noni. Course ground beef (85% lean) was mixed by weight with 0, 2, 4, and 6% noni pulp, ground through a 9.5 mm plate, and
formed into 113 g patties. Patties were packaged and placed in simulated retail display (4 °C and 1600 lx lighting) for 5 d. No fewer than 8 experienced panelists evaluated the patties daily to determine visual color scores of total color, worst point color, and percent discoloration. Instrumental color was evaluated daily using a Hunter Miniscan to determine L* (lightness), a* (redness), and b* (yellowness). TBARS assays (lipid oxidation) were conducted on d 1, 3, and 5 of display. Beef patties, either cooked to 71 °C and were served warm for conventional panels; or cooked to 71 °C, chilled overnight and were warmed to 71 °C for warmed over flavor panels. Patties were evaluated by a trained taste panel to determine beef flavor juiciness, off flavor, as well as overall flavor over. Inhibition of Escherichia coli O157:H7, Salmonella spp., and non-O157 Shiga Toxin producing Escherichia coli were determined with a zone of inhibition test amonid noni (juice, puree, and pulp) solutions, using either trypic soy agar or plate count agar. Pure noni solutions alone, for pulp were 50, 75, and 100%; for puree were 2, 4, 6, 8, 10, 50, 75, and 100%; and for juice were 3, 5, 7, 10, 25, 50, 75, and 100%. Scores for total color, worst point color, and percent discoloration indicated that the panelists perceived the noni-incorporated patties as redder and less discolored than controls. Instrumental values also indicated that the noni patties were redder (greater a*) and yellower (greater b*) throughout display (P < 0.01). Similarly, analysis of TBARS assays showed oxidative rancidity was decreased with noni incorporation during display (P < 0.05). In both fresh and warmed over flavor taste panels, panelists perceived less beef flavor and more intense off flavor as the percentage of noni increased (P < 0.05). Freshly cooked patties decreased in mouth feel scores with increased noni percentage (P < 0.05); but patties with 2% noni pulp were perceived as the juiciest (P < 0.05). Microbial analysis indicated there was no true antimicrobial activity in solutions of noni used. Noni juice at 100% resulted in slight inhibition of E. coli O157:H7, Salmonella, and non-O157 STEC. Noni puree at greater than 75% and noni pulp at greater than 50% resulted in slight inhibition to Salmonella and non-0157 STEC. Results from these studies showed that while noni may increase shelf life, there needs to be more research done to increase consumer acceptability and provide pathogenic reduction for noni-treated ground beef.

Keywords: Noni, Color stability, Antimicrobial

The shelf life and stability of traditionally packaged ground beef of three lean formulations as influenced by storage at −1.7 or 2.3 °C for up to 28 days prior to retail display
J. Martin*, J. Brooks, S. Jackson, T. Brooks, J. Starkey, J. Legako, M. Miller, Texas Tech University, Lubbock, United States

Approximately 50% of ground beef shelf life is lost at the accepted storage temperature of 2 °C. However, the effect of lean formulation, and its interaction with storage parameters, on the shelf life of traditionally packaged ground beef is widely unknown. This research aimed to characterize the effects of cold storage temperature (−1.7 or 2.3 °C) and storage length on the shelf life properties of ground beef of 3 formulations. Coarse ground beef chubs of 3 lean:fat formulations (73:27, 81:19 and 91:9) were divided into 2 storage temperatures (−1.7 or 2.3 °C) and stored in darkness for 7, 14, 21 or 28 d. At each 7 d interval, one chub per storage temperature and formulation was removed from storage, finely ground, portioned, and packaged on expanded polystyrene trays wrapped in polyvinyl chloride (PVC) film. Packages were placed in retail cases maintained at 0–2 °C for 24 h. Samples were obtained before packaging and after 24 h of lighted retail display. Samples were analyzed using a variety of subjective and objective measurements, including: thiobarbituric acid (TBA) analysis, trained panel sensory, instrumental color (L*, a*, b*), and non-pathogenic aerobic plate counts (APC). Instrumental L* values increased (P < 0.05) in higher fat formulations; however, no differences in initial or 24 h redness (a*) were noted between lean formulations. Trained panelists were unable to detect differences in initial color due to storage length or temperature, but did indicate differences due to lean formulation (P = 0.0083). In accordance with saturation values, panelists indicated increased discoloration and reduced color stability as storage length increased (P < 0.05). Panelists indicated that ground beef stored at 2.3 °C was more discoloring and less stable after 24 h than product stored at −1.7 °C. Aerobic plate counts increased as storage increased from 7 to 28 d and were higher for ground beef stored at 2.3 °C (P < 0.05). Initial TBA values increased as the storage period progressed through 21 d. However, a decline in initial TBA values after 28 d was noted for all formulations, except 73:27 ground beef stored at 2.3 °C. Overall, these data indicate initial physical and biochemical indicators of color stability and shelf life were dependent primarily on lean composition; however, the effects of storage temperature and length were notable after 24 h of display and indicated declining shelf-life at a higher storage temperature (2.3 °C). Regardless, ground beef stored for 21 or 28 d before display had compromised shelf life.

Keywords: Composition, Ground beef, Shelf life

Cookery method impacts on instrumental cooked color and tenderness of goat loin chops
S. R. Greathousea, J. T. Sawyerb, B. D. Lambere, J. P. Muirb, K. A. Thompsonc, C.A. Schoenthalb, ‡Tarleton State University, Stephenville, TX, United States, ‡Texas Agrilife Research, Stephenville, United States

It appears the demand for goat products is rising as slaughter numbers continue to increase on a yearly basis, whereby spurring a further need for research applications on goats and goat meat products. The objectives of this study were to evaluate the effects of cookery method on instrumental tenderness and internal cooked color of goat loin chops. Fresh loins were vacuum-packaged and aged at 2 °C in the absence of light for 7 d. Following the aging period, loins were frozen at −10 °C until fabrication could be completed. Frozen loins (n = 32) were cut into 2.54 cm-thick chops using a BIRO Bandsaw, individually identified, and randomly assigned to cookery applications (Convection Oven-BLOD, Gas-Fired Open Hearth Grill-CHAR, and Electric Griddle-GRID). After cutting, chops were vacuum packaged and stored at −10 °C until analysis could be conducted. Prior to cooking, chops were thawed for 24 h at 2 °C, removed from the vacuum package, weighed to determine pre-cooked weight, and cooked to an internal temperature of 71 °C. Instrumental cooked color (L*, a*, b*, and 630:580 red to brown) was conducted using a Hunter MiniScan XE, and instrumental tenderness was assessed using an Instron with the Warner-Bratzler Shear Force attachment. Data were analyzed as a completely randomized design with the mixed model procedure of SAS (SAS Inc., Cary, NC). For all variables, least squares means were generated, and when significant (P < 0.05) F-values were observed, least squares means were separated with the PDIFF option. Cookery method resulted in a slight improvement (P < 0.05) in WB SF as chops cooked on the CHAR grill received lower values than chops prepared with the BLOD and GRID methods. Lightness (L*) values appeared darker when chops were cooked using a method such as the BLOD and forced-air convection (P < 0.05) than chops using a direct or radiant heat methods such as the CHAR or GRID. However, redness (a*) values were greater (P < 0.05) for chops cooked with radiant heat methods than those in direct contact (GRID) or convection heating (BLOD) methods. As a measure of the change in the internal cooked color from red to brown which occurs during the cooking process the reflectance ratio (630:580) was calculated from instrumental spectral measurements. Red to brown values were greater (P < 0.05) for chops cooked using the CHAR method than convection (BLOD) or direct heat methods (GRID). Results from
the effects of freezing and thawing rates on tenderness and sensory quality of beef subprimal

J. Hergenreder*, J. Hosch², K. Varnold², A. Haack², L. Senaratne³, S. Pokhare³, C. Beauchamp⁴, B. Lobaugh⁴, C. Calkins⁴, ³University of Nebraska, Lincoln, United States, ²Colorado Premium, Greeley, United States, ³iQ Foods, Fayetteville, AR, United States

To evaluate handing methods for frozen beef subprimals, the effects of freezing and thawing rates on tenderness and sensory properties were evaluated. There were 6 treatments: fresh–never-frozen 14 d aged, fresh–never-frozen 21 d aged, blast frozen–fast thawed, blast frozen–slow thawed, conventionally frozen–fast thawed, and conventionally frozen–slow thawed. Three subprimal cuts—ribeye rolls, strip loins, and sirloins—were utilized with 3 replications of 5 samples per treatment (n = 270). Blast freezing occurred by placing spacers between the boxes of meat on pallets at −28 °C with high air velocity while conventional freezing occurred with pallets stacked and placed in a −28 °C freezer with minimal air movement. Fast thawing of subprimals (internal temperature of −2 °C) occurred by immersion in a circulating water bath (<12 °C) for 21 h and slow thawing of subprimals occurred over a 2 week period set on tables at 0 °C. Purge loss was measured after thawing—before cutting. Steaks were cut from the longissimus thoracis (LT), longissimus lumborum (LL), and glutus medius (GM) (2.5 cm thick) for Warner-Braztler shear force (WBS) and trained sensory evaluation. Sensory samples were rated for tenderness, juiciness, connective tissue, and off-flavor after cooking to 71 °C. Slow thawed subprimals had the greatest amount of purge loss (P < 0.001) in the LT, LL and GM. Fast thawed subprimals were equal or superior in purge loss to fresh–never-frozen 14 and 21 d aged subprimals (P = 0.0001) in the LT, LL and GM. For all steaks, frozen treatments were equal or superior in WBS to fresh–never-frozen 14 and 21 d aged steaks. For LL and LT steaks, slow thawed steaks were equal or superior in WBS when compared with fast thawed steaks (P = 0.01). There were no differences in WBS among the GM steaks (P = 0.08). There were no differences in sensory tenderness within the LL, LT, and GM (P = 0.05). There were no significant differences in juiciness in the LL and GM (P = 0.05). The LT fresh–never-frozen 14 and 21 d aged product was juicier than the frozen product (P = 0.001). There was no difference in connective tissue in the LT or GM (P = 0.05). A greater amount of connective tissue was detected in the slow thawed LL compared with the fast thawed LL (P = 0.02). There were no differences in off-flavor in the LT and LL (P = 0.05). Conventionally frozen-fast thawed steaks had the strongest prevalence of off-flavor (P = 0.02) in the GM. Overall, when thaw rates are properly managed, tenderness and sensory attributes will be comparable to fresh product.

Keywords: Beef, Freezing method, Thawing method

Effect of modified distillers grains with solubles and crude glycerin inclusion in beef cattle finishing diets on shear force and moisture loss of beef strip steaks

The objective of this study was to evaluate the inclusion of modified distillers grains with solubles (MDGS) and crude glycerin in beef finishing diets, on quality characteristics of fresh strip steaks. Crossbred steers and heifers (n = 48) were assigned randomly to one of 4 treatment groups and fed individually using a Calan gate feeding system. Treatments were arranged in a 2 x 2 factorial design as follows: traditional steam flaked corn diet with no MDGS or glycerin

Keywords: Pro-melanin concentrating hormone, Warner-Braztler shear force, Beef cattle

Association of pro-melanin concentrating hormone genotype with Warner-Braztler shear force of beef longissimus dorsi
C. Gasch**, T. Lawrence*, J. Hutcheson³, P. Defoor², L. Marquez²,²⁴West Texas A&M University, Canyon, United States, ²Intervet/Schering-Plough Animal Health, De Soto, KS, United States, ³Cactus Feeders Ltd., Cactus, TX, United States, ⁴Quantum Genetics, Saskatoon, Saskatchewan, Canada

Beef cattle from 2 independent studies were obtained from feedyards in the Texas panhandle (n = 352) and southern Idaho (n = 542) to assess the association of pro-melanin concentrating hormone (PMCH) genotype with beef tenderness. Tissue samples were collected from each animal at each site to determine which PMCH allele they expressed (Texas; AA—49.43%, AT—21.59%, TT—28.98%; Idaho; AA—65.87%, AT—29.34%, TT—4.80%). Twenty 4 h after harvest, carcass attributes were evaluated and longissimus dorsi muscle samples were collected. Three steaks were allocated from each carcass and aged for 7, 14, or 21 d postmortem. Warner-Braztler shear force measurements were determined for each steak. The Idaho site had greater percentages of steaks below tenderness thresholds of 4.0 and 4.6 kg compared with the Texas site. Study site (Adj R² = 0.30, Root MSE = 0.736), cooking loss (Adj R² = 0.29, Root MSE = 0.744), block (Adj R² = 0.23, Root MSE = 0.771), marbling score (Adj R² = 0.17, Root MSE = 0.802), presence or absence of zilpaterol hydrochloride in the feeding ration (Adj R² = 0.15, Root MSE = 0.813), calculated empty body fat (Adj R² = 0.12, Root MSE = 0.833), fat thickness (Adj R² = 0.08, Root MSE = 0.848), calculated yield grade (Adj R² = 0.04, Root MSE = 0.862), number of PMCH T alleles present (Adj R² = 0.03, Root MSE = 0.866), and hot carcass weight (Adj R² = 0.01, Root MSE = 0.876) accounted for variation in Warner-Braztler shear force value. Predicting objective tenderness with pre-harvest knowledge of presence or absence of zilpaterol hydrochloride in the feeding ration and number of T alleles present accounted for 18% of the variation (Adj R² = 0.18, Root MSE = 0.80) in Warner-Braztler shear force. When predicting objective tenderness with pre- and post-harvest knowledge, presence or absence of zilpaterol hydrochloride in the feeding ration, number of T alleles present, fat thickness, LM area, and marbling score accounted for 31% of the variation (Adj R² = 0.31, Root MSE = 0.73) in Warner-Braztler shear force. When predicting objective tenderness with pre- and post-harvest factors and cooking factors, presence or absence of zilpaterol hydrochloride in the feeding ration, number of T alleles present, LM area, percentage of empty body fat, marbling score, and cooking loss accounted for 44% of the variation (Adj R² = 0.44, Root MSE = 0.66) in Warner-Braztler shear force. Using only knowledge of the number of T alleles present was used to quantify variation in cooking loss (Adj R² = 0.18, Root MSE = 0.035), percentage of empty body fat (Adj R² = 0.06, Root MSE = 2.989), marbling score (Adj R² = 0.05, Root MSE = 8.755), fat thickness (Adj R² = 0.04, Root MSE = 0.495), calculated yield grade (Adj R² = 0.04, Root MSE = 0.744), hot carcass weight (Adj R² = 0.02, Root MSE = 33.190), and lean color score (Adj R² = 0.01, Root MSE = 0.555); PMCH genotype explained a small portion of the variation in Warner-Braztler shear force value and appeared to be a more useful indicator before harvest.

Keywords: Goat, Cookery method, Shear force

this study indicate that cookery methods and heat transfer through the product can impart differences in the instrumental assessment of internal cooked color and tenderness measurements.

Keywords: Pro-melanin concentrating hormone, Warner-Braztler shear force, Beef longissimus dorsi
inclusion (CON); CON with 35% MDGS substitution (MDGS); CON with 10% glycerin added (GLY); and both 35% MDGS and 10% glycerin added (MDGS/GLY). Crude glyc erin and MDGS inclusion was in the place of steam flaked corn in the MDGS, GLY, and MDGS/GLY treatments. When cattle reached a mean weight of 590 kg, they were humanely harvested at a commercial abattoir in 2 groups. Strip loins were removed from the right side of each carcass 48 h post mortem, vacuum packaged, and transported refrigerated to the University of Minnesota Meats Laboratory. Strip loins were weighed in packaging and after packaging removal to calculate vacuum purge loss percentage. Two 2.54-cm steaks were cut serially from the anterior end of each strip loin for further analysis. Steaks were weighed, suspended for 24 h at refrigerated temperature and isolated atmosphere, and then re-weighed to calculate drip loss percentage. For shear force analysis, steaks were weighed, cooked to an internal temperature of 71 °C, cut into 6 steaks. Two steaks (for 0 d protein oxidation and shear force samples) were vacuum-packaged and stored at 0±2 °C. Each trial. Treatment did not affect Warner–Bratzler shear force values (P=0.001) and CON had the highest values for juiciness (P<0.001). Results indicate that the addition of MDGS and crude glyc erin in beef finishing diets did not negatively affect color stability of strip steaks and ground beef, but may impact sensory characteristics of beef strip steaks.

Keywords: Beef, Glycerin, MDGS

Effect of modified distillers grains with solubles and crude glyc erin inclusion in beef cattle finishing diets on shelf life and sensory characteristics of beef strip steaks and ground beef

The objective of this study was to evaluate the inclusion of modified distillers grains with solubles (MDGS) and crude glyc erin in beef finishing diets, on quality characteristics of fresh strip steaks and ground beef. Crossbred steers and heifers (n=48) were assigned randomly to one of 4 treatment groups and fed individually using a Calan gate feeding system. Treatments were arranged in a 2 × 2 factorial design as follows: traditional steam flaked corn diet with no MDGS or glyc erin (CON); CON with 35% MDGS substitution (MDGS); CON with 10% glyc erin added (GLY); and both 35% MDGS and 10% glyc erin added (MDGS/GLY). Crude glyc erin and MDGS inclusion was in the place of steam flaked corn in the MDGS, GLY, and MDGS/GLY treatments. At a mean weight of 590 kg, cattle were humanely harvested at a commercial abattoir in 2 groups. Strip loins and shoulder clods were removed from the right side of each carcass 48 h post mortem, vacuum packaged, and stored refrigerated. Five 2.54-cm steaks were cut serially from the anterior end of each strip loin for further analysis. Shoulder clods were ground individually, twice through a 0.375-cm grinder plate. Two strip steaks and 0.5 kg of ground beef from each animal were placed on separate trays with PVC overwrap and stored at 4 °C under cool white fluorescent lighting for 7 d. Objective color values (L*, a*, and b*) were taken at 6 locations on each package with a Minolta CR-310. Subjective color scores (lean color, surface discoloration and overall appearance) were evaluated by an 8 member trained panel. Steaks for consumer sensory evaluation were cooked to an internal temperature of 71 °C, cut into 1 cm × 1 cm × 1 cm cubes, and served to an untrained consumer panel (118 panelists). Each panelist was given 2 steak cubes per treatment and asked to evaluate overall liking, flavor liking, texture liking, toughness, juiciness, and off flavor. There were no differences between treatments for L*, a*, or b* values (P=0.40, 0.90 and 0.64, respectively) for strip steaks. Additionally, lean color, surface discoloration, and overall appearance of strip steaks was not affected by treatment (P=0.76, 0.97 and 0.95, respectively) for all 7 d of the trial. Treatment did not affect ground beef L*, a*, or b* values (P=0.06, 0.09 and 0.89, respectively) or subjective lean color, surface discoloration, and overall appearance (P=0.87, 0.89, and 0.35, respectively). CON and MDGS had higher values for consumer overall liking and texture liking of strip steaks (P=0.02 and 0.002 respectively). Treatment did not affect flavor liking, however did show a trend (P=0.08) with MDGS having higher values than MDGS/ GLY. MDGS/GLY had higher toughness values than CON and MDGS, but not GLY (P<0.001) and CON had the highest values for juiciness (P<0.001). Results indicate that the addition of MDGS and crude glyc erin in beef finishing diets did not negatively affect color stability of strip steaks and ground beef, but may impact sensory characteristics of beef strip steaks.

Keywords: Beef, Glycerin, MDGS

Dietary antioxidants have little effect on the tenderness decline and protein oxidation that occur during retail display of beef in high oxygen modified atmospheric packages

This study was conducted to evaluate the effects of feeding dietary antioxidants (Agrando Plus; AG, which contains ethoxyquin and tertiary butyl hydroquinone) to beef cattle on protein oxidation and tenderness of beef subjected to retail display in high oxygen (80% O2; 20% CO2) modified atmospheric packages (HiO2-MAP). Crossbred (British × Continental) steers (n=467) were fed dry-rolled corn-based finishing diets containing 0 (corn) or 30% wet distillers grains plus solubles (WDGS) supplemented with AG (0 or 150 ppm for the last 145–160 d). After 48 h of postmortem chilling, USDA Choice beef short loins from 20 carcasses per dietary treatment were collected and aged a total of 8 and 29 d at 0±2 °C. Each m. longissimus lumborum was cut into 6 steaks. Two steaks (for 0 d protein oxidation and shear force samples) were vacuum-packaged and stored at −20 °C. Two other steaks were packaged in oxygen-permeable film on styrofoam trays (PVC-OW) or in HiO2-MAP, and displayed for 7 d under simulated retail display conditions for shear force testing. Two additional steaks were cut into halves, packaged as either PVC-OW or HiO2-MAP, and retail displayed either 4 or 7 d for protein oxidation measurements. Tenderness of steaks was determined by the Warner-Bratzler Shear Force (WBSF) test and protein oxidation was evaluated by measuring carbonyls and free thiols (sulfhydryl) contents. More carbonyls and fewer sulfhydryls indicate more protein oxidation of steaks. Dietary treatment significantly (P=0.02) affected WBSF. Steaks from AG fed cattle had significantly (P=0.04) higher WBSF value compared with steaks from cattle fed non-AG supplemented diets; steaks from corn plus AG fed cattle the highest WBSF values (P=0.02). The PVC-OW steaks were more tender than HiO2-MAP steaks after retail display (P<0.0001). During retail display, steaks in PVC-OW packaging improved in tenderness (P<0.01) while those in HiO2-MAP decreased in tenderness (P<0.0001). This effect was more dramatic in steaks aged 29 d compared with those aged 8 d (P=0.03). Aging significantly increased steak tenderness (P<0.05). Carbonyls of
29 d aged steaks increased during retail display irrespective to the dietary treatment (P<0.05). Eight and 29 d aged steaks from corn + AG diets had significantly more carbonyls compared with steaks from non-AG supplemented corn diets. Steaks in HiO2-MAP had more carbonyls than PVC-OW steaks (P = 0.03). Sulphydryls decreased during aging and during retail display (P < 0.05). During retail display, steaks from cattle fed non-AG supplemented diets had fewer (P < 0.05) sulphydryls than steaks from AG-fed cattle. Steaks in HiO2-MAP tended to have less sulphydryls compared with steaks in PVC-OW (P = 0.09) during retail display. Overall results indicate that longer aging and HiO2-MAP of steaks cause more protein oxidation (higher carbonyls and lower sulphydryls) and reduced tenderness during retail display. Moreover, feeding Agrado Plus tends to decrease tenderness and increase protein oxidation (fewer free thiols) during retail display.

Keywords: Beef tenderness, Protein oxidation, Antioxidant

Effects of phase-feeding beef tallow on quality characteristics of bacon from growing-finishing pigs fed dried distillers grains with solubles

N. A. Browne*, J. K. Apple, C. V. Maxwell, J. W. S. Yancey, D. S. Delozier, Department of Animal Science, University of Arkansas, Division of Agriculture, Fayetteville, United States

Crossbred pigs (n = 216) were used to test the effects of phase-feeding beef tallow (BT) on quality characteristics of bacon from growing-finishing swine. Pigs were blocked by initial BW (26 ± 5.3 kg) and gender before allotment to pens (6 pigs/pen), and pens (6 pens/block) were allotted randomly to 1 of 6 dietary treatments. Dietary treatments consisted of: a negative control (NC) devoid of BT for all phases; a positive control (PC) with 5% BT for all phases; or treatments including 5% BT during phases 1 and 2 (BT12), during phases 1, 2, and 3 (BT123), during phases 3, 4, and 5 (BT345), or during phases 4 and 5 (BT45). All dietary treatments were formulated with 30% dried distillers grains with solubles (DDGS) during phases 1, 2, and 3, 15% DDGS during phase 4, and no DDGS during phase 5. Pigs were slaughtered at a commercial pork packing plant at an average BW of 124.1 kg. Bellies were identified with each pig’s identification number before transportation to a commercial bacon-manufacturing plant, where weights were recorded during each step of curing and thermal processing. Then, bellies were sliced, and USDA-certified No. 1 slices were collected, individually boxed, and transported under refrigeration to the University of Arkansas for cooking characteristics and sensory panel evaluations. Upon arrival at the abattoir, sliced bacon from the center of each belly was identified, vacuum packaged, and stored at −20 °C. Bacon for cooking characteristic evaluation was thawed at 1 °C for 24 h before evaluation. Instrumental color (L*, a*, and b*) values of the bacon fat were determined with a Hunter Miniscan XE. Bacon was cooked in a commercial convection oven (preheated to 204.4 °C) for 9 min, blotted dry and precooked and cooked weights were used to calculate cooking loss percentage. A 6.0-cm section of bacon was removed from the center of the slices, and each section was sheared once through with a 6-blade Alto-Kramer shear force device attached to an Instron Universal Testing Machine. Shear force values of the cooked bacon were determined from a mean of 4 sections. For each taste panel session (n = 18), 12 slices of bacon from one pig from each of the dietary treatments was used (72 slices/panel). Bacon was thawed for 48 h at 1 °C, striated randomly across 8 racks (9 slices/rack), and cooked in convection ovens (preheated to 218.3 °C) for 17 min. Each panelist received 6 slices (approximately 7.5 cm length) of bacon in random order. Panelists were provided unsalted saltine crackers, drinking water, and apple juice or apple slices to cleanse their palates between samples. Yield of commercially-processed bacon (pumped belly yield, smoked belly yield, and the percentage of number 1 bacon slices) was not (P ≥ 0.14) affected by the dietary treatments. There was no (P ≥ 0.23) effect of BT inclusion on color (L*, a*, and b*) values of the bacon fat, color loss percentage, or Alto-Kramer shear force. Traits evaluated by the sensory panel (initial crispiness, bacon flavor intensity, saltiness, sustained chewiness, oiliness, and off flavor intensity) were not (P ≥ 0.55) affected by the dietary treatments. Results of this study indicated that phase-feeding BT to pigs fed diets formulated with DDGS had no impact on quality characteristics of bacon.

Keywords: Bacon, Phase feeding, Beef tallow

Light-emitting diode effects on color stability of frozen beef and refrigerated cured pork

M. J. O’Halleran*, J. R. Claus, University of Wisconsin-Madison, Madison, United States

Since light-emitting diodes are designed to not emit UV light, they have the potential to improve color stability by reducing photodegradation associated with traditional lighting. To test this hypothesis, fresh Black Angus (USDA Select, n = 4, 21 d PM, 5.55 average pH, experiment 1) strip loins were cut into steaks (3.8-cm thick) with each steak assigned to one of 4 bloom conditions (Air, 100% Oxygen) and lighting displays (fluorescent; light emitting diode, LED; 1076 lx). Steaks were bloomed (24 h, 2 °C), then vacuumed packaged and frozen (−15 °C, dark, 6 d) before being continuously displayed (−11 °C). Color stability was assessed instrumentally at 12 h intervals. Vacuum packaged pork loins (n = 4, 2 °C, 19 d PM, 5.62 average pH, experiment 2) were cut in half. Sections were injected with a solution of NaCl (1%) and sodium nitrite (50 or 150 ppm). Loins were tumbled (18 RPM, 2 h, 2 °C), cured overnight, stuffed (fibrous casings) and then smokehouse processed (71 °C interval). Chops (2.5 cm thick) were removed and vacuum packaged. Packages were inflated with 1% oxygen and displayed (2 °C). Color measurements were taken immediately after packaging and at 4, 8 and 12 h on d 1. After d 1, measurements were taken in 12 h increments. Individual loins represented the experimental unit. Results were analyzed using Proc Mixed of SAS to determine main and interaction effects. When significance (P < 0.05) was found in the models, means were separated by pairwise comparisons using the PDIF option of SAS. For experiment 1, colorimeter (CIE a*, chroma C*) and reflectance spectrophotometric measurements (%R630nm divided by%R580nm, higher ratio, more intense red) did not document a difference (P > 0.05) between lighting types on air-bloomed steaks for these redness indicators. However, LED lighting improved color stability in oxygen-bloomed steaks as determined by higher (P < 0.05) values (more intense red) along with less metmyoglobin (MMb) accumulation (%R572nm divided by%R525nm) compared with oxygen-bloomed steaks under fluorescent lighting. LED lighting also resulted in less (P < 0.05) MMb compared with fluorescent lighting in air-bloomed steaks. Color deteriorated over display time regardless of bloom condition or lighting. Although LED lighting did extend beef color stability of oxygen-bloomed steaks the extension was not as long as that of typical unfrozen beef. For experiment 2, there were no differences (P > 0.05) in CIE a*, Chroma C* or nitrosylhemochrome (NITHHEME) concentration in the cured pork between the 2 different display lights. There were no differences (P > 0.05) in NITHHEME concentration in the pork loins cured with 50 and 150 ppm sodium nitrite. Differences (P < 0.05) were found between 50 and 150 ppm sodium nitrite chops in CIE a* (6.71 versus 7.13, respectively; standard error, 0.169) and chroma C* (7.33 versus 7.75, respectively; standard error, 0.175). With increasing display time, means of CIE a*, chroma C* and NITHHEME concentration increased.
Chromat C and NITHEME generally decreased. No interactions (P = 0.05) were found. LED lighting does not appear to offer retailers any increase in color stability as frozen beef color rapidly deteriorated similar to beef under fluorescent lighting. In addition, in low-oxygen compromised or poorly packaged cured pork, LED lighting did not demonstrate any color stability benefits.

Keywords: Light-emitting diodes, Color stability, Fresh beef and cured pork

Evaluation of the influence of genetic markers on meat quality
M. S. McGraw*, S. J. Jones, University of Nebraska-Lincoln, Lincoln, United States

Genetic variation in meat animals can have a profound effect on meat quality. One hundred twenty market hogs were slaughtered at approximate weight of 123.0 kg and then chilled overnight. Carcass data were collected including: hot carcass weight, cold carcass weight, first rib fat thickness, last rib fat thickness, last lumbar fat thickness, average back fat thickness, tenth rib fat thickness, and loin eye area. Meat quality was determined by measuring: Japanese color score, marbling score, loin firmness score, Minolta color score (L *, a * and b *), pH, drip loss, Warner-Bratzler shear force, and cooking loss. Alleles in Protein kinase, AMP-activated 3 subunit (PRKAG3) have been reported to have economic importance to the meat industry, because of its affects on glycogen content and related meat quality traits. The 3 variants for the PRKAG3-I199V polymorphisms was performed using PCR-RFLP. The allelic frequency of the 199I is known to be associated with regulation of energy homeostasis. DNA was isolated from muscle and genotyping of the PRKAG3-I199V polymorphisms was performed using PCR-RFLP. The allelic frequency of the 199I is known to be associated with regulation of energy homeostasis. DNA was isolated from muscle and genotyping of the PRKAG3-I199V polymorphisms was performed using PCR-RFLP. The allelic frequency of the 199I is known to be associated with regulation of energy homeostasis. DNA was isolated from muscle and genotyping of the PRKAG3-I199V polymorphisms was performed using PCR-RFLP. The allelic frequency of the 199I is known to be associated with regulation of energy homeostasis. DNA was isolated from muscle and genotyping of the PRKAG3-I199V polymorphisms was performed using PCR-RFLP.

Keywords: PRKAG3, AMPK, Genotype

Role of antioxidants in color and tenderness of beef steaks in high and low oxygen packages
S. Bolte*, L. Senaratne, S. Pokharel, K. Varnold, C. Calkins, University of Nebraska, Lincoln, United States

Pigment oxidation causes discoloration in beef during retail display. Protein oxidation reduces beef tenderness under high oxygen packaging conditions. These 2 studies were conducted to evaluate the effectiveness of various antioxidants on controlling discoloration and tenderness during retail display of beef under low or high oxygen conditions. Each study used steaks from 5 strip loins that were aged for 14 d. Steaks were held as untreated controls or dipped in one of 6 antioxidant solutions containing α-tocopherol (T), tertiary butyl hydroquinone (TBHQ), a commercial extract of Rosemary (Herbalox, Kalsec Inc., Kalamazoo, MI), or combinations of 2 of the antioxidants

Keywords: Beef, Dry aging, Shelf-life
Effects of Hydro-Lac inclusion pre-harvest on glycolytic potential and sensory attributes of beef

S. A. Kern, T. D. Jennings, H. L. Doering-Resch, D. S. Kohls, S. M. Scramlin, K. R. Underwood, A. D. Weaver, South Dakota State University, Brookings, United States, 2Form-A-Feed Inc. and Techmix LLC, Stewart, MN, United States

The 2005 National Beef Quality Audit revealed that 1.9% of carcasses were categorized as dark cutters resulting in an estimated $168 million loss to the industry due to poor retail display properties, shorter product shelf life and poor sensory attributes. While strategies to improve animal handling and management practices have reduced the incidence of dark cutters, cases remain, and new strategies to further reduce this quality defect are necessary. Hydro-Lac® (HL) is a patented, timed event nutrition (T.E.N) product, designed to provide essential nutrients, electrolytes, sugars, and other proprietary ingredients necessary to maintain fluid balance and performance in live cattle during periods of stress. However, the mechanisms by which HL may mediate the effects of stress on beef quality have not been evaluated. Therefore, the objective of this study was to determine the effects of HL on the incidence of dark cutting beef, glycolytic potential, and meat sensory attributes. Thirty-two (n = 32) Holstein steers received HL supplementation for 2 d before slaughter and 32 (n = 32) received no supplement to serve as the control (CON). Carcass data were recorded 48 h postmortem, and a 7.62 cm section of the longissimus dorsi (LD) was removed posterior to the ribbed surface. Samples were trimmed and further dissected into 2.54 cm steaks for Warner-Bratzler shear force (WBSF) analysis and 0.6 cm slices for evaluation of glycolytic potential and pH. Lean trimmings were pooled within treatment group, coarsely ground, mixed, finely ground, and formed into 114 g patties. Patties were retail wrapped and evaluated at 0, 2, 4, and 7 after grinding for subjective color analysis (lean color, percent discoloration, desirability), objective color analysis (Minoita L* and a*), taste panel sensory evaluation (juiciness, rancidity, beef flavor intensity, and off flavor) and lipid oxidation. No significant differences were observed for carcass characteristics or WBSF, however HL samples were numerically lower in WBSF compared with CON samples (P=0.1192). Although no carcasses were identified as dark cutters, HL samples revealed significantly higher glycolytic potential (P=0.0004) and a trend for lower ultimate pH (P=0.0559). Sensory panel evaluation of beef patties revealed no differences between CON and HL samples for lean color, percent discoloration, desirability, or beef flavor. However, CON samples showed a higher degree of rancidity (P = 0.0274) and detectable off-flavors (P=0.0152, 0.0007 and <0.001 for d 0, 2, 4, and 7 respectively) compared with HL samples. No difference were observed for a*, however HL patties had significantly higher L* values (P=0.0052, 0.0016, < 0.0001, and 0.0002 for d 0, 2, 4, and 7 respectively). Additionally, lipid oxidation (TBARS) values were significantly higher (P=0.0001) at d 2, 4, and 7 of retail storage in CON patties compared with HL patties. Collectively this study illustrates that HL inclusion in pre-harvest cattle diets increases the glycolytic potential of beef LD, reduces sensory evaluation of rancidity and detectable off-flavors and reduces lipid oxidation.

Keywords: Dark cutter, Glycolytic potential, Sensory panel

Effectiveness of oxygen barrier oven bags in low temperature cooking on reduction of warmed over flavor in beef roasts

A. N. Lepper*, E. P. Berg, D. S. Buchanan, W. P. Keller, K. R. Maddock-Carlin, P. T. Berg, North Dakota State University, Fargo, ND, USA

The objective of this study was to evaluate combinations of beef roasts cooked in commercially available cooking bags compared with open-roasting, fresh vs reheat, and different roast sizes to determine the most effective combination to prevent warmed-over-flavor (WOF). Reynolds oven bags (Reynolds Packaging Group, Richmond, VA) and Cryovac oxygen barrier bags (Cryovac Sealed Air Corp., Duncan, SC) and open-pan roasting comprised the bag treatment. Within each treatment cloths (NAMPS 116) were portioned into 1.1 kg, 2.2 kg, and whole (7.3 kg). The roast size and bag treatment combinations were then designated to be evaluated as freshly cooked or reheated (cooking method). Six roasts of each type were cooked in a convection oven at 77 °C until an internal temperature of 71 °C was reached and held for one to 2 h. The roasts to be reheated were placed in refrigeration (4 °C), held for 72 h as cooked, in a bag or open. A daily assignment of roast combinations was randomly determined before the beginning of the experiment. Reheated roasts were brought to an internal temperature of 69 °C. Both fresh and reheated roasts were presented to a trained sensory panel with no more than 8 samples evaluated at any session. A trained panel of 7 members evaluated 1.27 cm cubes for cardboardy, painty, brothy, salty, bitter, fatty, sweet, and other off-flavors on an 8 point hedonic scale as recommended by AMSA. The descriptors of cardboardy and painty were the indicators of WOF development. All of the means for the WOF descriptors were low as was consistency of responses. No sample received a unanimous nonzero response for any of the descriptors and all had means below 3 on the 8 point sensory scale. Panelists detected a significant WOF descriptor painty in the interaction of weight x bag (P=0.03); painty intensity increased in open-pan roasts as the size increased, however painty in Reynolds bags decreased as roasts size increased. Panelists also found significant painty descriptor presence in the interaction of weight x cooking (P=0.05), the painty intensity was more evident as size of the roasts increased. Cardboardy was significant for the interaction of bag x cooking (P=0.03), responses showed reheated roasts were more cardboardy than the fresh, especially for open cooked roasts. Each roast was sampled and immediately frozen on dry-ice for
The impact of post mortem aging on longissimus lumborum, gluteus medius, and semimembranosus muscles in cattle fed zilpaterol hydrochloride

The effects of post mortem aging on longissimus lumborum, gluteus medius, and semimembranosus muscles in cattle fed zilpaterol hydrochloride

Past research has shown β-agonists such as zilpaterol hydrochloride (ZH) tend to increase Warner-Bratzler shear force (WBSF) values. The objective of this study was to examine the impact of aging on WBSF and sliced shear force (SSF) values of longissimus lumborum (LL), gluteus medius (GM), and semimembranosus (SM) muscles in cattle fed ZH. Black, English-type steers (n=480) were assigned to the following treatments: no ZH (CON) and zilpaterol hydrochloride (ZH), then blocked by weight. Seventy 2 carcasses were randomly selected per treatment, carcass data were recorded, and full loins and inside rounds were collected (n=144). Full loins were fabricated into strip loins and top butts. Five 2.54 cm steaks were collected from each muscle and assigned to an aging period (7, 14, 21, 28, and 35 d). Warner-Bratzler shear force was conducted on LL, GM, and SM steaks for all aging periods while SSF measurements were collected from 14 d and 21 d LL steaks only. Data were analyzed as a randomized complete block design using the MIXED procedures of SAS. The model included ZH and CON and the random statement included plant as the block. Least squares means were computed and separated (P<0.05) using the PDIFF option of the MIXED procedure. Binomial proportion (frequency) data were analyzed using the GLIMMIX procedure of SAS with the same overall model described above, but without a random statement. Frequency data indicates that 74.3% of CON and 69.7% of ZH carcasses graded Choice or above (P=0.26). Cattle fed ZH were significantly (P<0.05) less tender than CON cattle for LL steaks across all aging periods. Slice shear force data also supports this difference in 14 d and 21 d steaks. At 14 d 100% of Choice or higher LL CON and ZH WBSF were values under 4.6 kg. Likewise, at 21 d and again at 35 d 100% of Select or lower LL ZH steaks tested less than 4.6 kg. Aging ZH LL steaks numerically reduced the WBSF value from 3.45 kg (7 d) to 2.85 kg (35 d) compared with CON LL steaks which were 2.84 kg at 7 d and 2.59 kg at 35 d. No significant differences between CON and ZH were found in GM or SM steaks. However, GM 7 d ZH steaks (3.59 kg) did exhibit a tendency (P=0.06) to be less tender than CON steaks (3.33 kg). When aging GM steaks to 14 d, the tendencies between ZH (3.35 kg) and CON (3.28 kg) were eliminated (P=0.62). Continued aging of these GM steaks to 35 d removed any differences (P=0.90) between ZH and CON steaks (3.13 kg, 3.12 kg, respectively). Ultimately, aging ZH steaks removes any differences in tenderness. In addition, ZH steaks numerically aged better than CON steaks for all 3 muscles. While mechanical differences in tenderness were found in LL steaks, aging to 21 d will likely remove any differences detectable by the consumer. The ZH treatment had no significant impact on the tenderness of GM or SM muscles, which also demonstrated numerical differences in regards to post mortem aging. Therefore, feeding ZH to cattle that are predisposed to being tender had no negative impact on the tenderness of LL, GM, and SM steaks if aged 21 d. Research on muscle fiber diameter, fiber type, and protein abundance may be beneficial to understanding why ZH decreases tenderness in cattle and second, ZH carcasses respond well to aging.

Keywords: WOF, Beef, Cooking bags

The effects of inclusion of various components of field peas in the finishing diets of Piedmontese × Angus heifers on growth and carcass characteristics

The objective of this study was to determine the effects of various field pea components in finishing diets on growth and carcass traits in cattle. Piedmontese × Angus crossbred heifers (n=126) were blocked by weight and assigned by pen into 1 of 4 dietary treatments (CON=no field peas; WRL=15% of DM as dry rolled field peas (hulls + seed); HULL=15% of DM as field pea hulls; CHIP=15% of DM as field pea chips (seed only)). Heifers were fed in 16 identical pens with 4 pens per treatment. Feed intake per pen was recorded daily, and individual heifer weights were taken every 28 d. Heifers were fed for 120 d and slaughtered at a commercial processing facility on 2 dates. Carcass data was collected 48 h after chill by trained university personnel, and samples were taken from the longissimus thoracis, semimembranosus, biceps femoris, and suprapinatus of each carcass. Steaks (2.5-cm thick) were removed from each sample, vacuum packaged immediately, aged for 14 d and then frozen. Warner-Bratzler shear force (WBSF) was measured for each aged steak. Data were analyzed using the MIXED procedure of SAS. The model included treatment, block, and date-of-slaughter with pen serving as the random variable. The addition of various forms of field peas to the finishing diets of Piedmontese × Angus crossbred heifers did not affect ADG (P=0.4), DMI (P=0.97), and G:F (P=0.26). The treatment did not affect HCW (P=0.97), 12th rib LM area (P=0.52), KPH (P=0.41), marbling (P=0.76), yield grade (P=0.62), and 12th rib fat (P=0.16). Dietary treatment did not affect the WBSF (P=0.15) of the longissimus thoracis, semimembranosus, biceps femoris, and suprapinatus steaks of each carcass. These data suggest that the addition of various components of field peas to finishing diets for 120 d did not affect growth performance and carcass characteristics of Piedmontese × Angus crossbred heifers.

Effect of kiwi fruit juice solution enhancement on color stability of beef semimpendicular steaks

A. F. VanDeWalle*, J. L. Bumsted, A. D. Weaver, S. M. Scramlin, K. R. Underwood, South Dakota State University, Brookings, United States

Beef color is an important quality attribute to consumers when making purchasing decisions from the retail case. Enhancement of lower valued cuts can be beneficial to consumers by increasing palatability, but has been shown to affect beef color stability. Marination with kiwi fruit enzyme, actinidin, has been shown to
increase tenderness yet limited research is available on its effect on beef color. The objective of this experiment was to determine the effects of varying levels of kiwi fruit juice enhancement on beef semitendinosus (ST) color stability. Fifty USDA Select, beef ST muscles were obtained from a commercial packing facility. Five days postmortem, ST muscles were randomly allotted to 5 treatments: control (non-enhanced; C), enhanced (water, salt, phosphates; E), and enhanced with a 1% (K1), 3% (K3), or 5% (K5) fresh kiwi fruit juice solution with a multi-needle injector to 110% of fresh weight, and tumbled under vacuum. Each ST muscle was vacuum packaged in a high barrier bag and aged for 7 d. One steak (2.54 cm) was fabricated from the medial portion of each ST muscle, placed on a styrofoam tray, polyvinyl chloride film overwrapped, and placed in a cooler (4 °C) under fluorescent lighting. Samples were measured daily over a 7 d period for objective and subjective color analysis. Objective color for L* (lightness), a* (redness), b* (yellowness) were taken using a Minolta Colorimeter, and subjective color analysis was conducted by trained panelists for visual color (1 = very bright red to 5 = very dark red) and discoloration (1 = 0% to 7 = 100% discoloration). A subsample was taken from each treatment for pH analysis. Data was analyzed as a completely randomized design using a general linear model procedure in SAS to analyze effects of treatment, day and treatment×day interaction. Interactions of treatment and day were not significant for L*, b*, or visual color, with only main effects found to differ. Enhancement with K5 significantly decreased L* values (P = 0.05) compared with all other treatments. C steaks had higher b* values (P < 0.05) and K5 steaks had lower b* values (P < 0.05) compared with all other treatments with no differences between E, K1, and K3 steaks. C and K1 steaks had lower visual color scores (brighter red) compared with E and K3 steaks, and K5 steaks had the highest visual color scores (dark red; P < 0.05). An interaction was observed for a* values; E steaks had a more rapid rate of decline in a* values and C steaks had the slowest rate of decline in a* values from 0 to 5 d (P < 0.05). However, by 7 d no differences were found for a* values between treatments (P > 0.05). Sensory discoloration was consistent across all treatments from 0 to 3 d. E steaks showed more discoloration at 4 and 5 d (P < 0.05) while C steaks showed the least sensory discoloration at 5 and 6 d (P < 0.05), however no differences were observed across all treatments by 7 d (P > 0.05). No pH differences were found between enhanced steaks; however C steaks had a lower pH (P < 0.05) than all other treatments. These data show kiwi enhancement had an effect on beef color; however, the effect was minimal, particularly in relation to E steaks.

Keywords: Beef color, Enhancement, Discoloration

Effect of storage in the presence of trona on pH, color, microbial load and lipid oxidation of ground beef
J. Lee*, K. Allen, D. Cornforth, Utah State University, Logan, United States

Modified atmosphere packaging (MAP) is used to increase beef color stability and may affect lipid oxidation and microbial growth. Finding a proper blend of gases for MAP for a specific use is a current focus in the industry. Trona is an evaporated mineral and the primary source of sodium carbonate in the USA. Trona mineral releases carbon dioxide in the presence of moisture. Anecdotal reports have been made about prolonged shelf life of fresh ground beef when stored in the presence of trona-containing packets, but this has not been verified in a formal study. This study was done to evaluate effects of trona packets on pH, color, microbial growth, thiobarbituric acid (TBA) values of ground beef under retail (1 °C) and home (4 °C) storage conditions. PVC-wrapped patties were held in 4 display conditions: 1) walk-in cooler with 4 trona packets (66 g each) and intermittent fan-driven air circulation (simulated self-serve retail case); 2) walk-in cooler w/o trona packets, and with fan-circulated air; 3) closed polyethylene box (50 × 90 × 18 cm) with 1 trona packet and sealed with tape (no air circulation); 4) closed box, w/o trona, no air circulation. Total plate count (TPC), pH, Hunter color and TBA values were measured after 0, 2, 4 and 7 days of retail storage. After 4 days, some patties from all 4 retail storage conditions were placed into one of two home refrigerators with or without trona. The same analyses were performed after 1, 2 and 4 days of home storage (5, 6 and 8 days total storage time). Three independent replicates (different meat sources, different weeks) were performed for the entire experiment. No significant effects of retail storage were found with trona packets for color, pH, TPC or TBA values (P > 0.5). Exposure to trona for 2 days in home refrigerators slightly but significantly increased TBA values (0.4 and 0.5 for patties w/or w/o trona exposure, respectively). No other significant effect of trona was observed in home refrigerators. In conclusion, use of trona packets was not effective to enhance beef patty color stability or shelf life under the conditions used in this study.

Keywords: Meat color, Storage condition, Trona

Enhancement of beef semitendinosus with varying levels of kiwi fruit juice solution decreases shear force and increases collagen solubility of semitendinosus steaks
J. L. Bunstedt*, D. Simon, A. F. VanDeWalle, A. D. Weaver, S. M. Scramlin, K. R. Underwood, South Dakota State University, Brookings, United States

Tenderness is an important issue to beef packers and retailers and has been established as the primary determinant of beef palatability. Variation in tenderness is due to differences in connective tissue content, sarcomere length, and postmortem proteolysis. Marination with kiwi fruit juice containing the enzyme actinidin has been shown to increase tenderness in beef, pork, and lamb muscles by increasing collagen solubility. The objective of this experiment was to determine the effects of enhancement on beef semitendinosus (ST) with varying levels of kiwi fruit juice on tenderness, moisture loss, and collagen solubility. Fifty beef ST muscles (USDA Select) were obtained from a commercial packing facility, transported to the South Dakota State University Meat Laboratory and stored at 2 °C until allotted to treatment. Semitendinosus muscles (n = 10) were randomly allotted to 1 of 5 treatments: a non-enhanced control, water enhanced containing water, salt and phosphate (P = 9.06), enhanced with 1% fresh kiwi fruit juice solution containing water, salt and phosphate (P = 8.80), 3% fresh kiwi fruit juice solution containing water, salt and phosphate (P = 7.99). Semitendinosus muscles were enhanced to 110% of individual muscle weight using a multineedle injector. Following enhancement ST muscles were tumbled under vacuum to aid in the distribution of the solution throughout the muscle. Each ST muscle was vacuum packaged in a high barrier bag and aged for 7 d. Following the aging period purge loss was measured as the difference in the weight of the muscle in the bag and weight of the muscle plus the bag weight and divided by weight of the muscle. Two steaks (2.54 cm thick) were fabricated from the medial portion of each ST and used to determine Warner-Bratzler shear force, collagen solubility, and cook yield. Semitendinosus steaks were cooked using an electric clamshell grill (George Forman Indoor/Outdoor Grill) to 71 °C. Peak internal cooked temperature measurements were recorded for each steak using a hand-held thermometer. Purge loss was increased with enhancement (P = 0.001)
but was not affected by addition of kiwi juice to the enhancement solution \((P=0.79)\). Warner-Braztler shear force decreased linearly \((P<0.0001)\) with enhancement and increasing levels of kiwi fruit juice. However, cook yield was not affected by enhancement \((P=0.49)\) or enhancement with kiwi fruit juice \((P=0.24)\). Soluble collagen increased linearly \((P<0.0001)\) and insoluble collagen decreased linearly \((P<0.0001)\) with enhancement and increasing levels of kiwi juice. These data show that kiwi fruit juice enhancement increases tenderness, collagen solubility and moisture loss during storage.

Keywords: Tenderness, Collagen, Enhancement

Improving tenderness of beef bottom round steaks with exogenous proteases and calcium chloride

Tenderness is among the most important palatability traits of beef. Bottom round steaks are generally considered inferior in tenderness, yet juicy and flavorful. Therefore, improving tenderness of the bottom round should yield highly desirable beef steaks. Plant enzymes have long been used to improve meat tenderness by proteolysis of myofibrillar and collagenous proteins. Calcium chloride (CaCl₂) activates calpain proteases and thereby induces myofibrillar protein degradation. Our objective was to determine the effects of exogenous proteases, bromelain (BR) or actinidin from kiwi extract (KE), in the absence or presence of CaCl₂ on Warner-Braztler shear force (WBSF) of beef bottom round steaks. Outside rounds (flat; IMPS 171B) from USDA Select carcasses were procured a minimum of 14 d postmortem. The shiitake heads were removed and bottom round flat flanks were denuded and cut into 3 sections (proximal, middle, and distal). Treatments were randomized among sections, and a minimum of 4 sections per treatment were used. Exogenous enzymes or 2.2% CaCl₂ \((\text{w/v})\) were suspended in water and injected into product, using a 4 needle injector, to 105% of green product weight. Control samples were injected with water. Bromelain treatments included 0.05, 0.075, 0.1, 0.2, 0.3, 0.6% \((\text{w/v})\), and KE treatments were 0.1, 0.3, 0.5, 1.0, 2.0% \((\text{w/v})\). Product was vacuum-tumbled for 20 min, then packaged and aged for 7 d at 4 °C before fabrication into steaks. Steaks (2.54 cm-thick) were cut perpendicular to the muscle fiber orientation. Following a 20 min bloom time, color \((\text{CIE L}^*\text{a}^*\text{b}^*)\) of the fresh cut muscle surface was measured. Steaks were weighed and then cooked on open-hearth broilers to an internal temperature of 71 °C. Steaks were then re-weighed to determine cooking loss, and allowed to cool to room temperature. Six cores \((1.27\text{ cm-diameter})\) were mechanically removed for WBSF determination. Preliminary experiments revealed that concentrations of BR above 0.1%, and concentrations of KE above 0.3% resulted in steaks with an undesirable texture, whereas exogenous enzyme treatments below these concentrations did not \((P>0.1)\) reduce WBSF. Bottom round steaks treated with 0.1% BR, 0.3% KE, 2.2% CaCl₂, or their combinations \((\text{KE}+\text{CaCl₂} \text{ and } \text{BR}+\text{CaCl₂})\) had lower \((P<0.01)\) WBSF than control steaks. The magnitude of the treatment response was similar among treatments. Enzyme and CaCl₂ treatments did not affect cooking loss \((P=0.34)\) or color \((P=0.29)\) of beef bottom round steaks. In conclusion, BR, KE, and CaCl₂ effectively reduce WBSF of beef bottom round steaks, but the effects of exogenous proteases and CaCl₂ are not additive.

Keywords: Beef, Bottom round, Tenderness

Characterization of volatile flavor compounds identified from cooked beef steaks using headspace solid phase microextraction gas chromatography mass spectrometry and their relation to USDA quality grade

J. F. Legako*, J. C. Brooks*, T. G. O’Quinn*, J. N. Martin*, T. D. J. Hagan*, R. Polkinghorne*, L. J. Farmer*, M. F. Miller*, J. A. Nasados*, L. C. Davis, R. N. Day, N. F. Elliot, S. L. King, W. I. Loucks, University of Idaho, Moscow, United States. aAgri-Food & Biosciences Institute, Belfast, Northern Ireland, bMeat & Livestock Australia, North Sydney, NSW, Australia, cColorado State University, Fort Collins, United States

Beef flavor is variable yet is the factor often shown to have greatest importance for consumer preference. Discoveries and improvements in the area of beef flavor are vital to the beef industry. Objectives of the study were to formulate and implement an analytical method for collection and analysis of beef volatile flavor compounds and to determine the association of USDA quality grade upon volatile beef flavor compounds. Volatile flavor compounds were collected from Longissimus lumbarum \((\text{LD}, n=3 \text{ per animal})\) steaks from 3 young beef animals of A maturity representing 5 USDA quality grades \((\text{Prime}, \text{ Upper 2-thirds Choice}, \text{ Low Choice}, \text{ Select}, \text{ and Standard})\). Head space solid phase microextraction \((\text{HS-SPME})\) was used to collect volatile compounds which were then analyzed by gas chromatography mass spectrometry \((\text{GC-MS})\). Among the volatile compounds collected and analyzed, 22 compounds previously shown to be associated with beef were identified by a mass spectral library and verified by comparison of target ions to those of authentic standards. The verified compounds were then quantified by an internal standard method \((4\text{-octanol})\). Among the 22 quantified compounds, 14 were selected \((P<0.30)\) through univariate analyses for inclusion in a multivariate \textit{ANOVA} model. Multivariate analysis indicated that 84.73% of the variability in the response variable \((\text{quality grade})\) was explained by the magnitude of volatile compounds. Compounds acetaldehyde, 2, 3-butandione, 3-hydroxy-2-butanone, heptanal, phenylacetaldehyde, dimethyl sulfide, 2-butanone, dimethyl disulfide, 2, 5-dimethyl pyrazines, nonanal, butanal, 2-methyl butanal, hexanal, and octanal had the largest to smallest impacts. Magnitude of compounds may indicate which compounds are influenced most by quality grade. Correlations of volatile compounds within quality grade \((\text{ranked 1–5, with 1 = Prime and 5 = Standard})\) revealed that ketones, such as, 2, 3-butandione \((0.30)\), 2-butanone \((0.34)\), 3-hydroxy-2-butanone \((0.30)\), 2, 5-dimethylpyrazine \((0.32)\; \text{a pyrazine}, \text{and nonanal (0.31; \text{an aldehyde}) were correlated with quality grade} (P<0.05). Aldehydes and ketones are products of lipid thermal degradation. We hypothesize, therefore, the correlations observed were based on differences in thermal degradation mechanisms of lipids within beef steaks of lower USDA quality grades and the further development of pyrazines was due to the Maillard reaction. These findings indicate that the developed method of analysis has potential to aid in the understanding of beef flavor through the measurement of volatile aroma compounds. However, much future research is required to fully explain the mechanisms of beef flavor chemistry.

Keywords: Beef, Flavor, HS-SPME

Chemical characterization of grass- and grain-fed beef related to meat quality and flavor attributes

R. Tansawai*, R. Ward, S. Martini, D. Cornforth, Utah State University, United States

There is currently much interest regarding forage-fed beef in the human diet, because of health benefits. Animal diet is important in determining sensory quality of meat. Some reports indicate a higher incidence of off-flavors in forage-finished beef. However, comparatively
is little known about the linkage between feeding regimens and their effect on specific compounds affecting beef flavor, oxidative stability, and antioxidant status. Thus, project aims were to evaluate beef quality as affected by grass- or grain feeding, and to correlate sensory attributes with specific flavor compounds. Cattle were finished for ~120 d exclusively on irrigated mixed grass/legume pasture (grass-fed), or an ad libitum ration of 60% corn silage, 30% flaked barley, and 10% chopped alfalfa hay (grass-fed). Animals (3/treatment) were harvested at 20–25 mo of age (318–360 kg carcass weight). Primal ribs were vacuum packaged and immediately frozen (~20 °C) for later analysis (~6 mo postmortem). Sample analyses were conducted in triplicate for all chemical and color measurements except thiobarbituric acid assay (duplicates). Ribs from grass-fed animals had higher fat content (12.43%) than grass-fed animals (3.36%), as expected. Raw steaks from grass-fed animals were darker (P < 0.0004), with less red (P = 0.0214) and yellow hue (P = 0.0013). Grass-fed beef had higher antioxidant capacity, associated with a lower degree of oxidation, i.e., lower TBA values (P < 0.05), and higher level of polyunsaturated fatty acids (P < 0.05), including conjugated linoleic acid (P = 0.0013), with positive health attributes. Animal diet also influenced headspace volatiles of heated meat. Volatiles were collected by solid phase micro-extraction, and identified by gas chromatography/mass spectroscopy. Descriptive panel sensory evaluation (12 trained panelists) was done on cooked steaks (74 °C internal temperature). Negative attributes such as barny, gamey, and grassy were higher in grass-fed beef (P < 0.05), associated with higher levels of benzaldehyde, toluene, dimethyl sulfone, 3-heptanone, hexadecanoic acid methyl ester, and 2-ethyl-1-hexanol. Grain-fed beef steaks had higher (P < 0.05) levels of hexanal, 1-octen-3-ol, 2,3-octanodione, and 2,6-bis(1,1-dimethylethyl)-4-ethyl-phenol. This information will assist producers with product labeling and marketing, and help consumers make wise decisions about the role of meat in a healthy diet.

Keywords: Beef, Carcass yield, Catability

Nutrient content of USDA Prime, Choice, and Select top loin steaks cooked to different degrees of doneness

A. M. Smith*, K. B. Harris, A. N. Haneklaus, J. W. Savell, Texas A&M University, College Station, United States

One of the unique challenges of beef is that consumers have personal preferences for the degree of doneness of the steaks they prepare or have prepared for them. Currently, beef nutrition information fails to report caloric values based on multiple endpoint temperatures or doneness. Because degree of doneness is an important variable to the consumer's overall acceptance of beef steaks, such information should be more readily available. The objective of this study was to determine the role of USDA quality grade on the nutrient composition of beef steaks when cooked to different degrees of doneness. Ten steaks were obtained from each of 5 USDA Prime, 5 USDA Choice, and 5 USDA Select strip loins and assigned to one of 5 degree of doneness treatments (2 sets of treatments per strip loin): raw, medium rare (63 °C), medium (71 °C), well done (77 °C), and very well done (82 °C). Raw or cooked steaks were dissected into separable tissue components: lean, fat, and refuse. Proximate analyses (protein, moisture, fat, and ash) were conducted on the lean. With increasing degree of doneness, cooking yield and percent moisture decreased (P < 0.05) resulting in differences such that a 250 g steak cooked to medium rare would yield 22 g more than a steak of equal weight cooked to very well done. Likewise, as degree of doneness increased, percent fat and protein also increased (both P < 0.05) while the percent of separable lean decreased slightly, but only very well done steaks had (P < 0.05) less separable lean. Grade did not (P > 0.05) have any influence on cooking yield or the percentage of separable lean. USDA Select steaks had (P < 0.05) less fat and more separable refuse when compared with USDA Choice and USDA Prime steaks. USDA quality grade influenced (P < 0.05) the percentage of chemical fat, moisture, protein, and ash found in top loin steaks such that fat increased as grade increased while protein decreased. With increasing grade, caloric value increased: there was a 46.1% increase in caloric values between Select and Prime steaks. There was a 9.0% increase in caloric values between medium rare and very well done steaks: for every increase in a degree of doneness, there was ~18 kJ increase in a 100 g edible portion. Degree of doneness and USDA quality grade plays important roles in the ultimate caloric value in top

Gender, fatness, muscling, and carcass weight influences on the cutability of yield grade 4 beef carcasses

J. T. Dillon*, M. R. Guellner*, D. B. Griffin, D. S. Hale, T. E. Lawrence, M. E. O’Connor, J. W. Savell, Texas A&M University, College Station, United States, West Texas A&M University, Canyon, United States, USDA-AMS, Washington, DC, United States

Carcass composition of yield grade (YG) 4 and 5 is a major non-conformity resulting in excess external fat and seam fat in carcass components. Cattle feeders, in an effort to maximize quality grade, have fed cattle to heavier weights and higher yield grades. Based on carcass composition and value difference of YG 4’s, merchandising strategies for beef cuts with incorrect cutability endpoints were a major research need. This study was conducted to assess cutout and value differences in YG 4 beef carcasses by evaluating influences of gender, fatness, muscling, and weight, and determine optimum utilization of yield grade 4 carcasses by packers. USDA Choice, YG 4 carcasses (n = 60) were selected according to gender: heifers (n = 20) and steers (n = 40); and weight groups: lightweight heifers (315.5 to 362.9 kg), lightweight steers (362.9 to 408.2 kg), heavyweight heifers (362.9 to 408.2 kg), and heavyweight steers (408.2 to 453.6 kg). Within each steer weight class, carcasses were separated according to a ratio of ribeye area cm² per 45.36 kg of hot carcass weight: heavy muscled (≥ 9.10 cm²) and light muscled (< 9.10 cm²). Carcasses were fabricated into boneless primal/subprimal and minor cuts, and external fat was trimmed to ≤ 0.64 cm. Subprimal organs, along with associated fat, lean trim, and bone, were weighed. Then-current market prices were used for value purposes. Data in this study revealed yield and value differences among current YG 4 carcasses. As expected, carcasses from heifers had more trimmable fat than steers (P < 0.05). Steers exhibited a higher red meat yield (P < 0.05) and higher yields of certain cuts from the chuck (P < 0.05) than heifers. Assigning values to carcass cutout components showed 22 of the 29 components differed between heifers and steers (P < 0.05), and 23 of the 29 components differed in at least one of the gender and weight groups (P < 0.05). Additionally, 13 of the 29 carcass components differed in value between lightweight and heavyweight heifer carcasses (P < 0.05). Total carcass value differed between steers ($574.43 to $639.74) and heifers ($507.05 to $568.20) (P < 0.05), between lightweight ($574.43 to $585.05) and heavyweight ($627.84 to $639.74) steers (P < 0.05), and between lightweight ($507.05) and heavyweight ($568.20) heifers (P < 0.05). However, no significant differences were observed in total value per 45.36 kg. With the exception of gender, there were no clear associations in carcass traits that could more accurately categorize value differences in USDA YG 4 carcasses. However, developing a prediction equation based on a carcass value endpoint may be beneficial in marketing carcasses of different gender and fatness categories.

Keywords: PUFA, Volatiles, Grass-fed
Goat meat is becoming increasingly popular in the United States, but its consumption is primarily in ethnic and rural markets. Increasing goat meat production and ensuring palatability of goat meat products may improve the industry. Thus, the objectives of this research were to examine carcass composition, tenderness, and sensory parameters of popular goat meat breeds at various stages of growth. Intact male Boer and Kiko goats were harvested after 0, 4, 8, or 12 wk on a high-protein concentrate diet (n = 6 goats per treatment combination). Composition of shoulder, foreshank, neck, breast, ribs, rack, loin, sirloin, leg, hindshank, trim and a 9–11 rib section were determined and compared with the composition of an entire carcass side. Warner–Bratzler shear force (WBSF) of the Longissimus lumborum, Infraspinatus, Supraspinatus, Gluteus medius, Biceps femoris, Adductor, Psoas major, Semimembranosus, and Semitendinosus muscles and texture profile analysis (TPA) of ground patties were evaluated. Soluble and insoluble collagen content of the Longissimus thoracis was determined. A trained sensory panel evaluated patties for aroma, taste, and texture attributes. Increased time on feed led to increased fat in the shoulder, breast, rack, loin, sirloin, leg, hindshank, ribs, neck, and trim (P<0.05). Boer carcasses also had a greater percentage of fat than Kiko carcasses in the shoulder, sirloin, leg, hindshank, ribs, and trim (P<0.05). Correlations between composition of the shoulder and the entire side were significant (P<0.05) for percent bone (r = 0.88), percent fat (r = 0.84), and percent muscle (r = 0.91). Significant correlations also existed between composition of the 9–11 rib section and the entire side (P<0.05) for percent bone (r = 0.59), percent fat (r = 0.85), and percent muscle (r = 0.37). Increasing feeding duration led to decreased WBSF of Longissimus, Semitendinosus, and Infraspinatus muscles (P<0.05), but collagen content and solubility were not changed (P>0.05), suggesting that cold shortening may have caused toughening of these muscles in smaller, leaner carcasses. Springiness, hardness, and cohesiveness TPA values were not affected by breed or feeding duration (P>0.05). Increased feeding duration increased aroma intensity and goaty, bloody, musty, and liver/organy aromas; salty, bitter, umami, grassy, goaty, fat, liver/organy, metallic, earthy, and chemical tastes; and juiciness and oiliness, while decreasing chewiness and crumbliness (P<0.05). Results indicate that younger, smaller goats produced leaner carcasses with less intense aroma and flavor attributes; however, certain muscles from smaller carcasses may be tougher. Also, the 9–11 rib section may be less useful for predicting carcass composition of goats than it is for other species.

Keywords: Goat, Sensory, Tenderness

Predicting beef tenderness using image texture features

X. Sun\(^1\), K. R. Maddock-Carlin, V. L. Anderson, A. N. Lepper, C. A. Schwartz, W. L. Keller, B. R. Ilse, J. D. Magolski, E. P. Berg, \(\text{North Dakota State University, Fargo, United States}\)

Beef tenderness is an important quality trait of meat for consumer satisfaction. The objective of this study was to investigate the usefulness of raw meat surface characteristics (texture) in predicting cooked beef tenderness. Texture features, including 88 gray level co-occurrence, 81 fast fourier transform (FFT), and 48 Gabor wavelet filter texture features were extracted from digital images of fresh beef obtained using a laboratory-based color camera (Model S2100HD, Fujifilm corporation, Japan) imaging system. Images were obtained on 2.54 cm thick cross-sectioned steaks cut from the longissimus thoracis (ribeye roll; n = 109; tender n = 86; tough n = 23), semimembranosus (inside round; n = 93; tender n = 48; tough n = 45), biceps femoris (outside round; n = 77; tender n = 67; tough n = 10), and supraspinatus (chuck tender; n = 81; tender n = 58; tough n = 23) muscles. Steak samples were segregated into tough and tender classification groups based on Warner–Bratzler shear force (WBSF) values whereby a WBSF...
of 4.0 kg or less was considered tender. The 217 texture features were submitted to STEPWISE multiple regression and support vector machine (SVM) analysis to establish prediction models for tender or tough beef. A subsample (80%) of tender or tough classified steaks was used to train the SVM or establish the multiple regression model which was then validated on the remaining (20%) “test” steaks. Twenty out of 100 (20%) steaks scanned were classified as tough. Both stepwise and SVM models correctly classified tender biceps femoris steaks (100%). For longissimus thoracis samples, the SVM machine method correctly predicted 100% of the tender steaks while the STEPWISE model accounted for 80% of the tender ribeye steaks. Tender semimembranosus steaks were correctly identified with an accuracy of 60% using the SVM model and STEPWISE accounted for 50% of tender steaks. When all steaks were pooled (no separate distinction of a specific cut) and analyzed by the SVM and STEPWISE model, the results were similar with the SVM model correctly identifying tender steaks 100% accurately and the STEPWISE equation identified 94.9% of the steaks correctly as tender. Finally, the SVM model was 100% correct characterizing tender supraspinatus steaks, while the STEPWISE model 70% accurate. The SVM and STEPWISE models were considerably less accurate in classification of designated tough samples. The texture features isolated in the present study through development of SVM and STEPWISE models show potential as a means to identify tender steaks, regardless of the anatomical origin.

Keywords: Beef, Tenderness, Texture

Effects of temperament classification and breed type on carcass characteristics, tenderness and carcass value in feedlot heifers

J. W. Behrens, a, b, R. K. Miller, a, b, J. C. Bailey, b, J. T. Walter, d, A. N. Hafla, f, E. D. Mendes, a, D. S. Hale, b, T. Machado, b, L. O. Tedeschii, f, G. E. Carstens, a, f, Texas A&M University, College Station, United States, bTexas A&M University at Kingsville, Kingsville, United States

The objectives were to determine the effects of temperament classification and breed type on carcass characteristics, tenderness and carcass value in Angus (AN; n = 184), Brangus (BN; n = 266), Simbra (SI; n = 196), and Brford (BO; n = 241) heifers obtained over 3 years from Deseret Ranch. Each year, heifers were received in 2 groups; fall and spring (initial age and body weight of heifers = 337 ± 86 d and 278 ± 4 kg, respectively). Heifers were fed a high-grain diet (ME = 3.08 Mcal/kg DM), and feed intakes were measured using a GrowSafe system for 70 d. Heifers were fed in group pens and harvested at an average backfat thickness of 1.2 cm in 2 groups. Exit velocity (EV), the rate heifers exited a squeeze chute, was used as an objective measure of temperament. Within trial, heifers were classified into calm, moderate, and excitable temperament groups based on ±0.5 SD from the mean EV. Heifers were commercially harvested and USDA Yield (YG) and Quality grade (QG) characteristics obtained. Warner-Bratzler (WBSF) and Slice shear force (SSF) values were measured on top loin steaks after 1, 7, and 14 d of vacuum-packed storage at 2°C. Carcass value was based on premiums for QG (Prime=+0.24), and discounts for carcass classification upon feedyard arrival using EV can be used to sort calves into outcome groups that differ in weight, marbling and carcass value. Sorting heifers into outcome groups would reduce variation within a group in carcass characteristics and allow marketing of value-based marketing to maximize these characteristics.

Keywords: Temperament, Breed, Tenderness

Estimation of relationships between carcass traits of young beef with Warner-Bratzler shear force of longissimus steaks

A. J. Garmy, b, c, J. C. Brooks, a, T. E. Lawrence, c, G. G. Hilton, d, D. L. VanOverbeke, e, B. L. Barham, f, P. A. Beck, c, M. S. Gadberry, c, R. J. Rathmann, g, J. M. Hodgen, h, J. P. Hutcheson, i, W. T. Nichols, j, D. A. Yates, k, M. F. Miller, l, Texas Tech University, Lubbock, United States, mWest Texas A&M University, Canyon, United States, nOklahoma State University, Stillwater, United States, oUniversity of Arkansas, Little Rock, United States, pIntervet Schering Plough Animal Health, DeSoto, KS, United States

The objective of this study was to determine the relationship between carcass traits of young beef with Warner-Bratzler shear force of longissimus steaks aged for 7, 14, or 21 d postmortem. Data from a total of 13,167 steaks were obtained with known carcass characteristics and WBSF value. Pearson correlations were generated, and stepwise linear regression analyses were conducted to determine the influence of carcass yield and quality traits on WBSF. Steaks represented traditional pre-harvest management strategies for market cattle, and various biological types were represented. When all postmortem aging periods were combined (7, 14, and 21 d), marbling score had the strongest relationship (r = −0.23; P < 0.01) to WBSF. Yield grade had a similar relationship to WBSF (r = −0.18; P < 0.01), which was greater than all of the individual factors accounted for by yield grade. All yield grade factors were related to WBSF (P < 0.01); however, coefficients ranged from −0.11 to 0.12, indicating weak linear relationships. Marbling alone accounted for 5% of the variation in shear force. The addition of hot carcass weight (HCW), ribeye area (REA), and kidney, pelvic, and fat percentage (KPH) increased the coefficient of determination of the final regression equation to 0.07. For steaks aged 7 d postmortem, marbling had the strongest relationship to WBSF (r = −0.27; P < 0.01), followed by yield grade (r = −0.27; REA (r = 0.15), 12th rib fat thickness (r = −0.11), and KPH (r = 0.10). Hot carcass weight was not correlated to shear force of steaks aged 7 d (P > 0.05). When steaks were aged 14 d postmortem, marbling score had the strongest correlation (r = −0.20; P < 0.01) to WBSF. Yield grade had a similar relationship to WBSF (r = −0.18; P < 0.01), which was greater than all of the individual factors accounted for by yield grade. Of the yield grade factors, 12th rib fat thickness had the strongest relationship to WBSF (r = −0.11), followed by REA (r = 0.09), HCW (r = −0.05), and KPH (r = −0.05). Marbling again had the strongest relationship (r =
Tenderness genotype and growth enhancement technology effects on performance, carcass characteristics and tenderness in feedlot heifers

S. M. Parketon

Objectives were to determine if growth-enhancement technologies (GET) affect carcass and tenderness characteristics in feedlot heifers of divergent tenderness genotypes (TG). King Ranch Santa Cruz heifers (n = 350) were genotyped for tenderness using molecular breeding values (Pfizer Animal Genetics), and the most (n = 64; TN) and least (n = 64; TO) tender genotypes heifers were selected. Heifers were blocked by BW and randomly assigned to implant (Revalor IH followed by Revalor H at 70 d re-implant, Intervet Inc.; RV) or no implant (no-RV) treatments. Within pen (n = 4), half of the TO and TN heifers received the RV treatment. During the last 28 d, pens were randomly assigned to receive the β-adrenergic agonist (Optaflex™, Elanco Animal Health; BA) or no-β-adrenergic agonist (no-BA) treatments. Heifers were harvested at 1.2 cm of 12th rib fat thickness, and USDA Quality grade (A) 24 h and 14 d desmin degradation. LM lipid and moisture (%), and collagen content were determined. Data were analyzed with Proc GLIMMIX using fixed effects of TG, RV, BA, and their interactions, and random effect of BW group. Initial and final BW were not affected by TG, RV, or BA treatments (P = 0.05). RV treatment increased ADG, but ADG was not affected by TG or BA. TG did not affect carcass and tenderness characteristics, but lean from TN heifers had lower (P = 0.001) desmin levels. Carcasses from RV heifers had less KPH, lower YG and QG, higher RG, or BA treatments. Within pen (n = 4), half of the TO and TN heifers received the RV treatment. During the last 28 d, pens were randomly assigned to receive the β-adrenergic agonist (Optaflex™, Elanco Animal Health; BA) or no-β-adrenergic agonist (no-BA) treatments. Heifers were harvested at 1.2 cm of 12th rib fat thickness, and USDA Quality grade (A) 24 h and 14 d desmin degradation. LM lipid and moisture (%), and collagen content were determined. Data were analyzed with Proc GLIMMIX using fixed effects of TG, RV, BA, and their interactions, and random effect of BW group. Initial and final BW were not affected by TG, RV, or BA treatments (P = 0.05). RV treatment increased ADG, but ADG was not affected by TG or BA. TG did not affect carcass and tenderness characteristics, but lean from TN heifers had lower (P = 0.001) desmin levels. Carcasses from RV heifers had less KPH, lower YG and QG, higher desmin levels, less LM lipid, and lower soluble collagen than carcasses from no-RV heifers. Steaks from RV heifers had higher 1 and 7 d WBSF and SS values. Carcasses from BA heifers did not differ (P = 0.05) in carcass characteristics, sarcomere length, pH, color space values and desmin. Steaks from BA heifers were darker (P = 0.004) and lower LM lipid (P = 0.001) than steaks from no-BA heifers. Soluble and total collagen was lower (P = 0.05) in steaks from BA heifers. Day 1 WBSF was higher (P = 0.007) in steaks from BA heifers. BA affected marbling score (P = 0.03) and LM lipid (P = 0.02) of TO heifers, but not TG heifers. Steaks from TO BA heifers were lower in LM lipid than steaks from TO no-BA heifers (382.4 vs 430.1 and 3.18% vs 4.75%, respectively); whereas BA did not affect LM lipid of lean from TN heifers. RV×TG affected (P = 0.04) 7 d WBSF. Steaks from TN no-RV heifers were more tender than steaks from TN RV, TO no-RV, and TO RV steaks (2.64 vs 3.66, 3.54 and 3.61, respectively). Steaks from no-BA, no-NO heifers had higher (P = 0.03) collagen solubility than steaks from no-BA RV, BA no-RV, and BA RV heifers (13.58 vs 8.95, 8.94, 9.01, respectively). Results suggest that TG interacts with GET to impact carcass quality traits.

Keywords: Tenderness, Genetic markers, Growth enhancement

Understanding the grade B4 beef in Alberta

J. Holdstock, L. Aalhus, B. Uttaro, H. Bruce

Canadian grade B4 beef carcasses are penalized by $0.35 per pound because the longissimus lumborum is dark, firm, and dry (DFD). The number of DFD carcasses in Alberta has nearly doubled since 2004 and spiked in 2007 to 2.5% in Alberta and 4.6% in Saskatchewan/Manitoba/British Columbia. DFD carcasses were more common in Eastern Canada, but have recently declined to record low levels. Classical DFD beef is caused by a combination of stress and insufficient muscle glycogen before slaughter, which results in an abnormally high post mortem muscle pH of 6.0 and dark lean color. This project surveyed the pH of muscles of 179 DFD carcasses over 5 visits to an Albertan abattoir and identified sub-classes within the Canadian B4 grade based on muscle pH (pH>6.0, 5.8<pH<6.0, pH<5.8). The sub-classes of grade B4 beef are as follows and the corresponding occurrence rates: classic B4; 74% occurrence rate, borderline B4; 20% occurrence rate, and atypical B4; 6% occurrence rate. Carcasses that grade Canadian B4 were lighter than Canadian AA carcasses (P = 0.0047). Canadian AA carcasses and Atypical B4 carcasses showed no differences in pH values at muscle dissection, however differences in color were observed in the following muscles: longissimus lumborum, longissimus thoracis, biceps femoris, semitendinosus, semimembranosus, and adductor according to Japanese Meat Grading Association acyclic color standards. Differences in shear force values have shown that borderline B4 beef is tougher than other sub-classes of grade B4 beef (P = 0.001). Differences in the glidic metabolites of the longissimus lumborum were found between classical B4 beef and AA beef when lactate, glycogen, and free glucose (µmole.g⁻¹) were measured (P = <0.001, P = 0.0146, P < 0.001, respectively). However no differences were found in glidic metabolites between the Atypical and AA beef in all measurements except free glucose suggesting that Atypical B4 carcasses have sufficient glycogen reserves ante mortem to attain a bright red color and a normal pH of 5.6. The DFD muscles within Atypical B4 carcasses may not be caused by the same mechanisms as the classical B4 theory states. Future research will examine the biochemical differences among DFD beef to better understand the mechanism producing dark lean.

Keywords: DFD (dark, firm, and dry), Dark cutting beef, Canadian grade B4

Predicting fluid loss in beef steaks injected with salt and phosphate with or without a dehydrated beef protein water binding ingredient

A. C. Lowder, C. L. Goad, X. Lou, J. B. Morgan, C. A. Miresles DeWitt

Injection of whole muscle beef cuts with a solution containing water, salt (NaCl) and sodium phosphates (SP) is economically important to processors because it offsets the loss of fluid during storage (purge), as well as enhancing flavor, juiciness and tenderness. Salt and SP are major contributors of sodium (39.3 and 31.2%, respectively). Recently, there has been an increased focus from the media and public on sodium in foods. Efforts to reduce sodium in injected meat products are needed. The objective of this study was to use response surface modeling to determine prediction equations and construct surface maps for the loss of fluid from injected beef steaks during storage as affected by the level of salt and SP. In addition, a

Keywords: Tenderness, Genetic markers, Growth enhancement
Reducing sodium levels in frankfurters by using naturally brewed soy sauce and natural flavor enhancer
M. M. McGough1,a, T. Sato1, S. A. Rankin1, L. L. Borchert1, J. J. Sindelar1, 2
1University of Wisconsin-Madison, Madison, United States, 2Kikkoman USA R&D Laboratory, Inc., Madison, WI, United States

Sodium chloride serves many important functions in processed meats, contributing to desirable quality and food safety characteristics; however, renewed interest exists in reducing sodium in the human diet. Due to salt’s functions in processed meats, it is not feasible to completely remove it from formulations. Current salt usage levels are already near minimum thresholds for important quality aspects of processed meats, and further reductions could be detrimental. This study investigated consumer sensory and quality impacts associated with partial replacement of normally added NaCl using naturally brewed soy sauce (SS) or natural flavor enhancer (NFE; a modified soy sauce). Varying levels of either SS or NFE (SS/NFE) were used with NaCl and/or KCl to comprise treatments (TRT) in 3 separate research phases, which investigated formulation NaCl replacement (Phase I) and NaCl (Phase II)/NaCl (Phase III) reduction. All phases included a 100% NaCl control (C). Phase I included 25%, 50%, 75%, and 100% NaCl replacement by SS/NFE. Phase II investigated a 50% SS/NFE + 50% NaCl base formulation (TRT 1) as well as 10% (TRT 2), 20% (TRT 3), and 30% (TRT 4) NaCl reductions. To allow further sodium reduction, phase III incorporated SS/NFE, NaCl and KCl to investigate if flavor enhancing effects of SS/NFE could attenuate bitterness associated with KCl. Phase III included the following TRTs: 50% SS/NFE + 50% NaCl base formulation (TRT 1) along with 20% (TRT 2), 35% (TRT 3), and 50% (TRT 4) NaCl reductions. Phase I results identified a 50% replacement of NaCl with SS/NFE as the baseline for subsequent phases. Phase I consumer sensory responses indicated that SS/NFE containing TRTs were perceived as saltier (P < 0.05) than C. While SS TRTs in phase II were not different from each other for overall liking, TRTs 2 and 3 had higher (P < 0.05) overall liking scores than C. When using NFE, TRTs 2, 3, and 4 possessed higher (P < 0.05) overall liking ratings than C. Furthermore, SS/NFE TRT 1 was rated saltier (P < 0.05) than TRTs 2, 3, 4 and C, suggesting that SS/NFE could enhance the perception of saltiness. Phase III sensory responses revealed higher (P < 0.05) overall liking scores for SS TRTs 1 and 2 compared with C. NFE TRTs 1, 2, 3, and C were not found to be different but were all rated higher (P < 0.05) for overall liking than TRT 4. SS/NFE TRT 1 was rated higher (P < 0.05) for saltiness than SS/NFE TRTs 2, 3, 4, and C. However, SS TRTs 3 and 4, as well as NFE TRTs 1 and 4, were rated slightly, but significantly, higher (P < 0.05) for bitterness than C suggesting a bitter note may have been detectable. All phase II and III SS/NFE TRTs possessed lower (P < 0.05) textural hardness values than C, and minimal differences were found for emulsion stability, color, and pH. This research has demonstrated that SS and NFE can be utilized to reduce the sodium chloride/sodium level of frankfurters without negatively impacting quality and sensory characteristics. SS and NFE have also been shown to possess a salt enhancing effect, thereby offering the ability to reduce added salt while still maintaining salty flavor in reduced sodium frankfurters. This research also suggested that a synergistic relationship may exist between SS/NFE, KCl and NaCl, allowing for even greater KCl utilization potential.

Keywords: Frankfurters, Sodium reduction, Soy sauce
Results suggested that TP can effectively improve oxidative stability, color, and odor of raw pork emulsion during refrigerated storage.

Keywords: Tomato puree, Lycopene, Raw pork emulsion

Effects of liquid and wood smoking combined with potassium lactate and acetate on the quality and inhibition of Listeria monocytogenes growth in ready-to-eat smoked catfish fillets

The objective of this study was to evaluate the effects of liquid and wood smoking with a potassium lactate (PL) and acetate (PA) combination on the quality and inhibition of L. monocytogenes growth in RTE smoked catfish fillets. A split-plot in a randomized complete block design was utilized to determine chemical, sensory and microbial changes in smoked catfish fillets. Catfish fillets tumbled with and without PL and PA were assigned as the main plots. No smoke (NS), wood smoke (WS), liquid smoke 1 (LS1) and liquid smoke 2 (LS2) were assigned as the subplots. No differences (P<0.05) existed among treatments with regards to pH, Aw, moisture content, total salt content, water-phase salt, and tenderness, but WS and LS1 led to the production of catfish with higher (P<0.05) CIE a* values and lower (P<0.05) CIE L* values. WS treated catfish had higher (P<0.05) CIE b* values than catfish from LS1 while CIE b* values of NS and LS2 were similar (P>0.05). Wood smoke with antimicrobials (WSWA) showed greater inhibition of L. monocytogenes than other treatments with the exception of LS1 with antimicrobials. Consumers preferred smoked catfish fillets treated with WS to LS1 with respect to appearance, odor, flavor, texture and overall acceptability. In conclusion, use of PL and PA did not impact the quality and sensory properties of smoked catfish fillets but had a synergistic effect with wood smoke constituents in inhibiting the growth of L. monocytogenes.

Keywords: Catfish fillet, Wood smoke, Potassium lactate and acetate

Turkish pastirma, a dry cured beef product and new trends in pastirma processing

Pastirma, a popular dry cured beef product made from whole muscle, is an intermediate moisture food. To produce pastirma, the exterior fat and connective tissue are removed from the meat, and then curing, drying, pressing and coating the resultant meat with çemen paste processes are applied. Although pastirma is defined as cured and dried meat product, partial fermentation also occurs due to natural microbial flora of meat. Pastirma is generally made from certain beef cuts; however, there is a growing trend to use alternative meats such as turkey, chicken and fish meat in its processing. The inclusion of tumbling and brine injection are other new approaches and tumbling significantly decreased microbial count and improved the sensory properties of dry-cured pastirma. Application of heat process in pastirma manufacture was also investigated and was reported to positively affect sensory properties of pastirma. Use of starter cultures decreased nitrite and nitrate residues in pastirma improved chemical quality parameters such as pH, residual nitrite and nitrate and instrumental color. Manufacturing restructured pastirma is another hot topic and is currently under research. Pastirma, a traditional meat product, does not have enough recognition and market share among traditional meat products. Its relatively high price, longer production time and non-standardized production procedures are ongoing issues. Standardizing production steps especially pressing stage, using controlled-artificial drying methods and optimizing raw meat quality need to be addressed. Moreover, a better production control system to satisfy consumer demands and to avoid potential food safety hazards is highly needed. In addition, alternative ingredient technologies (use of starter cultures) and processing steps (i.e., tumbling) may be implemented to improve pastirma quality further.

Keywords: Pastirma, Meat processing, New technologies

Reduction in oil uptake by using defatted rice bran in popcorn chicken and corn dogs

Until recently, rice bran, a by-product of rice milling, was considered unfit for human consumption or prolonged storage. Due to new stabilizing technology to inactivate the lipase, rice bran is no longer viewed as waste material. In June 2008, stabilized rice bran was approved by the USDA as a binder in comminuted meat and poultry products such as sausages, nugget-shaped chicken patties, meatballs, meatloaf and meat patties. Further processing of rice bran by removal of the oil fraction results in a product termed defatted rice bran (DRB). DRB provides an allergen-free, functional ingredient which can replace a portion of the wheat flour in batter/breading systems used in fried products. The low level of gluten in DRB may have a reduced affinity for oil and therefore, could potentially reduce oil uptake during the frying process. The objective of this study was to determine the reduction in oil uptake when DRB was used to partially replace pre-dust, batter and breading in popcorn chicken and batter mix in corn dogs. Chicken breast was tumbled and marinated with salt, water and phosphate solution to 20% of its green weight. The marinated chicken was diced into 8 g pieces and coated with pre-dust, hydrated batter and breading mix each containing 0%, 5%, 10%, 15% and 20% DRB. Total pickup was targeted at approximately 30% of the raw marinated chicken weight. The coated chicken pieces were par fried for 30 s. in oil at 185 °C, frozen overnight, then fully fried to an internal temperature of 73.9 °C. Results show that the fat content of the popcorn chicken after fully frying was significantly (P<0.05) reduced by 10.9%, 13.1%, 21.7% and 22.1% and 20% DRB. Total hydrated batter pickup was targeted at approximately 50% of the hot dog weight. The corn dogs were par fried for 30 s in 185 °C oil, frozen overnight and fully fried in 176.7 °C oil for 8 min. Results show that the fat content of the corn dogs after fully frying was significantly (P<0.05) reduced by 30.9% and 61.8% and finished product calories were significantly (P<0.05) reduced by 2.4%, 4.9%, 7.3% and 9.8% respectively when DRB was used at 5%, 10%, 15% and 20% in the pre-dust, batter and breading compared with the control. Regular fat beef hot dogs were coated with corn dog batter each containing 0%, 10% and 20% DRB. Total hydrated batter pickup was targeted at approximately 50% of the hot dog weight. The corn dogs were par fried for 30 s in 185 °C oil, frozen overnight and fully fried in 176.7 °C oil for 8 min. Results show that the fat content of the corn dogs after fully frying was significantly (P<0.05) reduced by 30.9% and 61.8% and finished product calories were significantly (P<0.05) reduced by 8.6% and 25.7% respectively when DRB was used at 10% and 20% in the corn dog batter compared with the control. DRB is an economical, functional ingredient that can significantly reduce the oil uptake and caloric content of fried breaded meat and food products. Additional benefits of using DRB include improved crispiness over extended holding times post frying, improved color and fiber contribution. The value of
Impact of rosemary and green tea extract on the oxidative and flavor stability of cooked ground chicken patties

K. Robbins*, Kemin Food Technologies, Des Moines, IA, United States

The impact of 0.2% rosemary extract (RE) or 0.2% of a blend of rosemary and green tea extracts (RGT) on the sensory acceptance and lipid stability of cooked chicken patties were compared with an untreated control during 14 d of refrigerated (2 °C) storage. The chicken patties were prepared using a 1:1 mixture of skinless breast meat and thigh meat with skin. Sodium chloride (0.5%) was added to the meat before grinding. Flavor stability was evaluated by an informal sensory panel, and oxidative stability was measured by thiobarbituric acid reactive substances (TBARS), hexanal, and 2,4-decadienal. Two replicates of each treatment (n = 2) were prepared. Both the RE and RGT patties had lower (P < 0.05) TBARS than the control patties on all testing intervals. The RGT patties had lower TBARS (P < 0.05) than the RE patties on d 4, 6, 11, and 14. The natural extracts reduced (P < 0.05) the secondary oxidative byproducts, hexanal and 2,4-decadienal, beginning on d 6 and 4, respectively. The TBARS were correlated (P < 0.001) with both hexanal (r = 0.9233) and 2,4-decadienal (r = 0.8764), for all treatments and test periods. The sensory acceptance scores were consistent with the TBARS and the oxidative byproducts. The RGT patties had the highest acceptance scores at each sampling period, and the RE patties had higher scores than the untreated patties at all times except d 4. The results indicated that the use of RE or RGT had a positive impact on the flavor and oxidative stability of refrigerated, cooked chicken patties. Furthermore, the blend of rosemary and green tea extracts was more effective than the rosemary extract alone.

Keywords: Green tea, Rosemary, Chicken

Effect of tumbling or soak marination on whole muscle beef jerky compositional and sensory attributes

G. R. Skaar*, E. A. E. Boyle, Kansas State University, Manhattan, United States

Whole muscle beef jerky is commonly produced by using the traditional method of soaking beef slices in a marinade at least overnight, or by short time tumbling in a marinade. To compare the effect of marination technique on beef jerky compositional and sensory attributes, whole-muscle beef jerky was prepared in 3 repetitive batches from beef inside rounds following the Kansas State University Meat Laboratory formulation and processing steps. Two marination techniques, either 24-h soaking in a tub, or 20 min vacuum tumbling were used. Additionally, a liquid smoke-based anti-mold spray provided by Kerry Ingredients (Monterey, TN) was applied to half of each treatment after drying to evaluate detection of smoke flavor resulting in 4 treatments: 1) soaked/not sprayed (S); 2) soaked/sprayed (SS); 3) tumbled/not sprayed (T); and 4) tumbled/sprayed (TS). During production, 42.7% marinade by meat weight was used for soaking, with the final pickup percentage after soaking being used as the amount of marinade added to the tumbled treatment, with the goal of achieving equal pickup levels between techniques. The amount of marinade picked up during soaking was 20.8–24.3% based on raw meat weight. There was an approximately 3% higher marinade pickup for soaked jerky vs. tumbled, so a full 100% uptake was not achieved during vacuum tumbling. Jerky moisture-to-protein ratio was 0.31 and was similar (P > 0.05) regardless of marination technique. Water activity (aw) was similar (P > 0.05) for SS, T, and T with a mean aw of 0.60, but slightly lower (P < 0.05) in S at 0.54. Salt concentration ranged from 4.66 to 7.27%. Soaked jerky contained 2.1% more (P < 0.05) salt than tumbled jerky, possibly due to the higher percent marinade pickup. A trained sensory panel found soaked jerky to have a slightly more salty and intense flavor (P < 0.05) than tumbled jerky, while the initial bite, chewiness, moisture, and off-flavor intensity was similar (P > 0.05) for soaked and tumbled jerky. Panelists found no difference in smoke flavor (P > 0.05) for jerky sprayed with a smoke derived anti-mold spray suggesting this product could be applied without changing flavor attributes. Using vacuum tumbling as a form of marination saves time compared with soaking beef slices for 24 h and produces jerky with many similar sensory attributes. However, if an equal level of marinade pickup is expected compared with soaking then additional marination, a longer tumble time and/or a decreased tumbler volume needs to be considered as this may affect finished salt concentration and sensory flavor intensity.

Keywords: Beef jerky, Marination, Sensory

Evaluation of antioxidant and antimicrobial activities Caesalpinia sappan L. extract and its application on meat patties

I.-S. Kim*, M. Yang, T.-H. Goo, S.-K. Yu, G.-R. No, S.-N. Kang, C. Jo, D. U. Ahn, K.-H.G Lee, Gyeongnam National University of Science and Technology, Jinju, Gyeongsangnam, Republic of Korea, Chungnam National University, Daejeon, Chungnam, Republic of Korea, Iowa State University, Ames, United States, Chungju National University, Chungju, Chungbuk, Republic of Korea

This study was carried out to investigate the antioxidant activities and antimicrobial activities of hot water extracts from 20 species of medicinal plants and evaluate meat products qualities added plant extract shown comparatively higher activities in antioxidant and antimicrobial properties. The following plant extracts have been tested: Erigeron canadensis, Rehmannia glutinosa Liboschitz var. purpurea Makino, Solanum nigrum, Crataegus pinnatifida Bunge var. typica Schneider, Cnidium officinale, Pulsatilla koreana, Lycium chinense Miller, Akebia quinata Decaisne, Codonopsis pilosula Nannfeldt, Lonicera japonica, Bambusoidae, Hoelen cum Pini Radix, Caesalpinia sappan L., Gleditsia sinensis Lamarch, Hovenia dulcis Thunb., Lonicera japonica Thunberg, Ledebouriellaseleodies, Bupleurumfalcatus L., Seed of Nelumbo nucifera Gaertner and Dioscorea batatas. The antioxidant activities of medicinal plant extracts were evaluated by various antioxidant assays, including free radical-, hydroxyl radical- and superoxide anion radical-scavenging activities in the same concentration. Those various antioxidant activities were compared with standard antioxidants, butylated hydroxyleylene (BHT) and ascorbic acid (vit. C). The highest activities of free radical (20.15% and 73.28%)-, hydroxyl radical (16.80% and 30.39%)- and superoxide anion radical (31.30% and 44.45%)-scavenging activities were obtained from the extract of Caesalpinia sappan L. (CA) (P > 0.05) in the concentration of 10 and 100 µg/mL, respectively. The antimicrobial effects of all these extracts were evaluated against Escherichia coli O157:H7, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis and Pseudomonas aeruginosa, Candida albicans and Vibrio parahaemolyticus. The agar disc diffusion methods were used to determine the zone of inhibition between the edge of the
Development of a functional multivitamin microcapsule for utilization in a ready-to-eat meat product

K. Foote*, J. Canon, B. Coty, R. Cope, L. Branham, K. Braden, Angelo State University, San Angelo, TX, United States

Commercial (COM) and laboratory (LAB) multivitamin microcapsules were implemented in a standard frankfurter formulation to produce a functional food. The control (CON) treatment consisted of the standard frankfurter formulation. Two trials (n=20/treatment/trial) were evaluated for sensory characteristics and thiamine levels using high performance liquid chromatography (HPLC). Thiamine level was utilized as an indicator of microcapsule viability after thermal processing and subsequent preservation. Treatment did not have an effect on any of the evaluated sensory characteristics in trial A (P>0.05). However, display day (dd) aging increased cook loss in Trial A. However, in Trial B, LAB and COM treatments had higher cook-loss (P<0.0001) than CON, transversely average initial juiciness scores increased depending on treatment (P=0.0353). The average initial and sustained tenderness in trial B was dependent on dd with tenderness increasing throughout the aging intervals (P<0.0001, 0.0002, respectively). Flavor intensity and off-flavor were not dependent on treatment or dd (P>0.05) for both trials. In Trial A, overall acceptability was affected by dd (P=0.0004). In Trial B, there were no differences in overall acceptability of products (P>0.05). Multivitamin microcapsule treatments did not have an effect on sensory characteristics when added to a ready-to-eat meat product. Thus, multivitamin microcapsules may be added to frankfurter formulations to increase functional properties without adverse affects on sensory properties.

Keywords: Multivitamin, Microcapsule, Sensory

Goat meat properties in overwrap packaging and high oxygen, carbon monoxide, and anoxic modified atmosphere packaging

W. T thigham*, K. W. McMillin, Louisiana State University Agricultural Center, Baton Rouge, United States

Goat meat has lower fat and higher unsaturated fatty acid content than other red meats. Most shelf life properties of meat are extended by modified atmosphere packaging (MAP), but MAP with oxygen (O2) may promote oxidation of lipids and pigments. Addition of carbon monoxide (CO) can enhance meat color. Few studies have examined goat meat in MAP and no studies were found on goat meat in MAP with CO. The objective was to determine properties of goat meat in MAP compared with air-permeable overwrap packaging through 21 d of 2 °C storage. Semimembranosus muscles from the right sides of 13 kid goat carcasses were cut into 1.25-cm thick slices at 24 h postmortem and randomly assigned to 80% O2:20% CO2, 80% N2:20% CO2, 69.65% N2:29.85% CO2:0.5% CO MAP or overwrap packaging and stored in the dark. Semimembranosus muscle was selected as the

Keywords: Fat/water holding, Fracture, Microstructure

Revisiting fat stabilization in comminuted meat products

W. Liu*, T. Lanier, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, United States

Finely comminuted meat products, like frankfurters and luncheon meats, typically contain 20–30% fat. Classic emulsion theory was initially proposed to explain fat holding ability during cooking (FHA), where solubilized myofibrillar proteins (MFP) stabilize the fat/water interface to form an interfacial protein film (IPF) that prevents fat coalescence and flow. Recently more emphasis has been placed on ‘entrapment’ of fat within the protein gel matrix formed upon cooking. Even with this understanding, however, a major role of the IPF in fat stabilization is generally accepted. We instead postulate that FHA is directly linked to water-holding ability during cooking (WHC). The latter is mediated primarily by capillary pressure, a function of the gel matrix structure/composition (pore size, surface properties, and dissolved solutes) according to the Jurin rule. An IPF undoubtedly exists at the fat:matrix interface, but we believe at most it plays a minor role in determining FHA. Others have shown close correlation of WHA with FHA in cooking of sausages, and the present work further investigates this correlation. The content of MFP (all from lean chicken breast) of a standard frankfurter batter (minus added fat) was adjusted successively downward by addition of 0, 15% or 30% whey protein isolate (WPI) in substitution of MF protein, holding moisture content constant. Thus ‘meat blocks’ of 3 different ‘bind quality’ levels would be simulated; WPI (low calcium) serves as a substitute for sarcoplasmic meat proteins and is essentially non-gelling below 70 °C. Pork fat (20% w/w) was added to 2 additional sets of these 3 batters, as either a pre-emulsion (PE) prepared with a portion of the salted chicken meat, or directly (non-pre-emulsion; NPE). Our assumption was that an IPF formed around PE fat droplets would be excellent and constant when added into gel matrices that likely would vary considerably in WHA. WHA (and FHA, for fat-containing batters) were measured during cooking (as cook losses), plus water holding capacity (WHC) and fracture stress/strain of cooked, cooled gels were measured by micro-centrifuge and torsion, respectively. Gel morphology and pore size were examined by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). As expected, WHA, WHC and gel fracture stress decreased with increasing substitution of WPI for MF protein in non-fat gels (P<0.05). The same trend was noted for fat-containing gels, whether fat was added PE or NPE. As WHA decreased, FHA during cooking also decreased accordingly such that the 2 were highly correlated (P<0.001). Marked changes in gel morphology, from fine- to coarse-stranded wherein ave. pore diameter increased >3x, were noted as substitution of MF by WPI was increased up to 30%. Because PE of fat imparted no additional stability to fat-containing gels as compared with NPE, the results can be interpreted as supporting our hypothesis that FHA corresponds directly to WHA during cooking, and that a fine-stranded, small pore-size matrix which exhibits high WHA and WHC likely also will exhibit high FHA. A strong/dense IPF likely is of little consequence when the average gel pore size favors poor WHA. Ongoing work will elaborate the properties of the IPF formed in each of the treatments described.

Keywords: Caesalpinia sappan L, Antioxidant, Antimicrobial

Goat meat properties in overwrap packaging and high oxygen, carbon monoxide, and anoxic modified atmosphere packaging

W. T thigham*, K. W. McMillin, Louisiana State University Agricultural Center, Baton Rouge, United States

Goat meat has lower fat and higher unsaturated fatty acid content than other red meats. Most shelf life properties of meat are extended by modified atmosphere packaging (MAP), but MAP with oxygen (O2) may promote oxidation of lipids and pigments. Addition of carbon monoxide (CO) can enhance meat color. Few studies have examined goat meat in MAP and no studies were found on goat meat in MAP with CO. The objective was to determine properties of goat meat in MAP compared with air-permeable overwrap packaging through 21 d of 2 °C storage. Semimembranosus muscles from the right sides of 13 kid goat carcasses were cut into 1.25-cm thick slices at 24 h postmortem and randomly assigned to 80% O2:20% CO2, 80% N2:20% CO2, 69.65% N2:29.85% CO2:0.5% CO MAP or overwrap packaging and stored in the dark. Semimembranosus muscle was selected as the

Keywords: Fat/water holding, Fracture, Microstructure

filter paper and the edge of the inhibition area. The antioxidant and antimicrobial properties of water extract from Caesalpinia sappan L (CA) were higher than the other tested medicinal plant extracts. Especially, the inhibition zones of CA extract were higher antimicrobial activities against Bacillus cereus, Salmonella typhimurium and Candida albicans, than the other extracts. CA extract was higher antimicrobial activities in antioxidant and antimicrobial activities than the other extracts. Therefore, to boost antimicrobial and antioxidant characteristics in meat patties, CA extract was used (0, 0.1 and 0.2%) as additives in meat processing product. Meat patties with CA had a lower (P<0.05) TBARS, VBN, Total aerobic bacteria (TAB) values and higher (P<0.05) pH values than control samples during storage. However, no significant differences were found in sensory evaluation (color, aroma, off-flavor, taste and texture).
largest muscle in the goat carcass that would give 8 slices (average 30 g each) for duplication of each packaging treatment. Three packages of each treatment (air permeable polyvinylidene chloride (PVDC) film and polyfoam trays for overwrap and barrier lidding film and barrier trays for MAP) were analyzed for pH, color, % drip loss, aerobic plate counts, and lipid stability at 3 intervals. The pH was measured with a probe electrode and portable meter (Model 2000 VWR Scientific), color with a Minolta spectrophotometer (Model CM-508 d portable with an 8 mm aperture, 10° observer angle, D65 illuminant source), aerobic plate counts with Petrifilm, drip loss as a percentage of initial weight, and lipid oxidation as thiobarbituric acid (TBARS) by aqueous extraction. The pH increased in all samples in the first week, and Semimembranosus in PVDC overwrap had the highest (P<0.05). Semimembranosus in PVDC overwrap had highest (P<0.05)% drip loss compared with MAP treatments during 21 d. Aerobic bacteria counts decreased by 0.1–0.5 log cfu/g with MAP while counts for goat meat in PVDC increased (P<0.05) 0.5 log cfu/g during 21 d. The 69.65% N2:29.85% CO2:0.5% CO MAP treatment had the lowest aerobic plate count. TBARS values for all treatments increased (P<0.05) with storage time, but were lowest (P<0.05) in anoxic MAP (80% N2:20% CO2) than in other packaging throughout the 21 d. Semimembranosus in overwrap packaging had lowest (P<0.05) L* lightness and highest (P<0.05) a* redness. Addition of 0.5% CO resulted in enhancement of Semimembranosus meat color while goat meat in anoxic MAP had the lowest lipid oxidation. Bacteria growth was decreased in MAP with CO2. Fresh goat meat appeared to have similar responses to overwrap and different types of MAP packaging during refrigerated storage as most other red meats.

Keywords: Goat meat, Packaging, Shelf life

Functional properties of a myofibrillar protein and commercial pea protein mixture as affected by ionic strength and microbial transglutaminase

G. P. Honga,*, J. P. D. Wanasundarab, M. Nickersonc, P. J. Shanda, aUniversity of Saskatchewan, Saskatoon, SK, Canada, bAgriculture and Agri-Food Canada, Saskatoon, SK, Canada

Various plant proteins have been studied as extenders in processed meat formulations and related information is mostly available on soy and wheat proteins. Despite nutritional advantages and worldwide production, pea protein (PP) has limited use in processed meat products. The aim of this study was to evaluate the effects of ionic strength and microbial transglutaminase (TG) on the functional properties of PP and porcine myofibrillar protein (MP) and to provide a better understanding on the role of PP in processed meat formulations. The MP, extracted by low ionic strength phosphate buffer (pH 6.5, I = 0.18), was washed repeatedly with 8 vol. of water (pH 6.5) until the NaCl content of MP reached below 1 mM and used as the zero-ionic strength MP source. Commercial PP (82% total crude protein) was donated by Nutri-Pea Ltd. (Propulse, Portage La Prairie, MB, Canada). For the preparation of MP and PP stocks, zero (I = 0), low (I = 0.05) and high (I = 0.53) ionic strength buffer (pH 6.5) were selected and the targeted protein concentration (1% for solubility and emulsion properties, 0.04% for turbidity measurement) was adjusted by diluting the stock with solutions of desired ionic strength. The protein mixture (MP + PP) was prepared by mixing MP and PP stocks at 1:1 (w/w). Fresh TG preparations (Active TG-TI, Ajinomoto USA, Fort Lee, NJ, USA) were made in respective strength buffer. The TG-treated protein suspensions (protein:enzyme preparation 2:1, w/w) were incubated at 4 °C for 24 h with the exception of the dynamic rheology study in which 4% protein was reacted with 0.5% TG without incubation. A 20% corn oil-in-water emulsion stabilized by 1% protein with or without 0.5% TG was prepared to characterize emulsion properties. On the basis of functional properties of proteins, the MP was definitely ionic strength-dependent, i.e., the MP was soluble at zero and high ionic strength (>90%) while it was insoluble at low ionic strength (<10%). The interaction of TG with MP was obvious at high ionic strength, where the TG-treated MP showed better gelling ability than untreated. Although ionic strength did not affect solubility of commercial PP (ca. 30%), interaction of MP and TG was best at low ionic strength where the TG-induced cross-linking of PP was rapid. The differences between the responses to ionic strength and TG by MP and PP affected the functionality of the protein mixture. The solubility maximum of the protein mixture was found at high ionic strength and low ionic strength resulted in lower solubility than zero-ionic strength (P<0.05). Although commercial PP showed a hindering effect on heat-set MP gelation, PP improved emulsion characteristics of MP. From a MP gelation point of view, the addition of TG promoted cross-linking between MP and PP, hence forming a heat-set gel of the protein mixture at high ionic strength in particular. This study suggested that application of commercial PP has no negative effect on the key functionalities of MP, while the combination of PP with TG has potential as an effective meat binder.

Keywords: Pea protein, Microbial transglutaminase, Ionic strength

Evaluation of tomato powder on physicochemical properties and antioxidative activities of regular-fat sausages during refrigerated storage

H. S. Kim*, K. B. Chin, Chonnam National University, Gwangju, South Korea

This study was performed to evaluate the antioxidant and antimicrobial effects of oven-dried tomato powder (TP) on emulsified pork sausages. The control (without TP), reference (butylated hydroxytoluene, BHT 0.01%), and 2 levels (1 and 2%) of TP were prepared. pH values and Hunter L value of pork sausages formulated with TP were reduced, while Hunter a and b values were higher than those of the control and those effects were increased with increased levels of tomato powder. During storage at 10 °C under the over-wrap packaging for 28 d, pH and Hunter L values were slightly increased, however, no differences in proximate composition, expressible moisture content, textural and sensory evaluation and total plate counts were observed among all treatments (P>0.05). However, thiobarbituric acid reactive substances (TBARS) values of pork sausages containing TP were lower than that of the control and reference, regardless of TP levels. These results indicated that TP could be used as a natural color agent and antioxidant in meat products.

Keywords: Tomato powder, Antioxidant activity, Emulsified pork sausage

Effect of different non-meat proteins and incubation times on gelling properties of pork myofibrillar protein gels

H. S. Jang*, K. B. Chin, Chonnam National University, Gwangju, South Korea

Red bean protein has been reported to have the high lysine content and might likely be the substrate for transglutaminase (TGase), which catalyze the protein cross-linking through the covalent bond. This reaction has also been used to improve gel strength of various protein gels including meat protein system. Therefore, this study was to determine the potential possibility to replace soy protein isolate (SPI) with red bean protein isolate (RBPI) on gel properties of myofibrillar
protein (MP) in the presence of microbial TGase. In first experiment, pork MP gels were prepared with 0.45 M salt and effect of 2 types (SPI vs RBPI) and various levels (0.1, 0.3, 0.5 and 1%) of non meat protein (NMP) on gelling properties were investigated. Although the type of NMP did not affect the gel strength (P≥0.05), but increased level of NMP increased the cooking yields (CYs). In addition, RBPI had higher CYs than SPI at the level of higher than 0.5%. In 2nd experiment, effect of 2 types of NMP (0.1%) and MTG (0.1%) with various incubation times (0, 4, 8, 10, and 12 h) on gel properties were also measured. MP gel strength at 10 h was harder than those with lower incubation times (≤10 h). CYs of MP gel with RBPI (0.1%) had higher than those with control (CTL) and SPI. These results indicated that addition of NMP increased CY, as compared with the CTL, regardless of incubation time. Sodium dodecyl sulfate PAGE (SDS-PAGE) indicated that incubation at 10 h allowed TGase to catalyze cross-linking of MP and RBPI or SPI through the covalent cross-linking. The protein patterns of MP gel (after cooking) on SDS-PAGE revealed that TGase catalyzed myosin heavy chain cross-linking during cooking. These results suggested that RBPI would likely be a good substrate for TGase to improve textural properties of meat protein gel and the optimum incubation time was found to be approximately 10 h at RBPI (0.1%) induced by TGase.

Keywords: Myofibrillar protein, Red bean protein isolate, Transglutaminase

Effect of packaging method on the shelf-life of meatballs made from sucuk dough

V. Göka*, E. Obuzb, L. Akkayac, R. Karab, Faculty of Engineering, Food Engineering Department, Afyon Kocatepe University, Afyonkarahisar, Turkey.

Turkish style meatballs (köfte) are produced mainly from ground meat (beef and/or lamb), fat (beef fat and/or lamb tallow fat), various spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkish sucuk is a fermented meat product and is produced by thoroughly mixing ground beef, beef fat and certain spices. Then, the resultant sucuk dough is put into natural and certain spices and/or moistened bread and called by different names depending on the local area. Turkey.

The objective of this study was to evaluate the effect of novel inclusion of fruit seed powders with high antioxidant phytochemical concentrations, in white, dark, and 1:1 composite blend blocks of ground turkey meat on objective color characteristics. Two hundred 20 5 turkey hens of the same age and diet were humanely harvested at the University of Minnesota Meats Laboratory. Breasts and thighs were removed from a random subset of turkeys (n=90) 24 h post mortem, vacuum packaged, and stored frozen. Turkey breast white meat and turkey thigh dark meat was tempered to refrigerated temperature for 48 h and uniformly ground by type into 27 kg batches. White and dark meat batches were divided in half with one portion from each batch being blended for a 1:1 composite meat block, for a total of 3 batches (white, dark, and composite). Each batch was divided and assigned randomly to one of 4 seed powder antioxidant treatment groups to be arranged in a 3×4 factorial: control with no added seed powder (CON); cranberry seed powder (CRAN); grape seed powder (GRAPE); and raspberry seed powder (RASP) for a total of 12 treatment groups. Seed powders were added to each treatment batch at 500 ppm and were blended for 5 min. One kg samples of each treatment were placed on trays and overwrapped with polyvinylchloride wrap, with 6 replications per treatment. Ground turkey packages were stored at 4 °C under cool fluorescent lighting and objective color values (L*, a*, and b*) were taken at 6 locations for each package for 7 d with a Minolta CR-310. CON L* values were highest for both white and dark meat for all 7 d (P<0.001). Additionally, a* values for both white and dark meat indicated differences (P<0.001) between the CON and RASP, and CRAN and GRAPE, with CON and RASP having higher a* values for all days. For white and dark meat blocks, treatment did affect b* values (P<0.001) with the highest values for CON and RASP. L* values for the composite blend where higher for CON compared with CRAN, GRAPE, and RASP (P<0.001). CON b* values for the composite blend were higher (P<0.001) than all seed powder treatments during the entire shelf life period. For a* values in the composite blend, CON and GRAPE were higher (P<0.001) than CRAN and RASP. These results indicate that the addition of seed powders to ground turkey meat did not improve color stability during 7 d of shelf life, however further investigation is warranted.

Keywords: Turkey, Antioxidants, Seed powders

Effects of Noni pulp and juice on Lee-Kramer shear force, cooked color and consumer acceptability of ground beef patties

C. R. Ahrens, J. W. S. Yancey*, J. K. Apple, T. M. Johnson, N. A. Browne, University of Arkansas Division of Agriculture, Fayetteville, United States

Effects of dried fruit seed powders on color stability of ground turkey meat

K. M. McClelland*, P. B. Addisb, J. M. Popowskia, T. J. McNamaraa, P. C. Nelsona, R. B. Coxb, *University of Minnesota, St. Paul, United States, bBotanic Oil Innovations, Spooner, WI, United States
The Noni plant (*Morinda citrifolia*) has been used as a homeopathic medicine in Polynesia for hundreds of years due to its antioxidant and analgesic properties. Recently, Noni pulp was successfully incorporated into ground beef patties to improve color stability and inhibit oxidative rancidity in retail display; however, trained taste panelists found the flavor of Noni-incorporated beef patties to be objectionable. The objective of the current study was to determine the effects of Noni pulp and clarified Noni juice (a separate Noni product) on objective tenderness measurements, internal cooked color, and consumer acceptability of beef patties. Ground beef (85% lean) was mixed with 0, 2.5, and 5% Noni pulp or Noni juice to create 5 treatments (5 ground beef batches/treatment) and was formed into 113-g patties, which were subsequently vacuum-packaged and frozen. Patties were thawed overnight at 4 °C and cooked on countertop griddles to 71 °C, turning every 4 min. For Lee-Kramer shear force, patties were allowed to cool to room temperature and a 6 × 6.0-cm section was cut from the center of each patty and sheared with a 6-blade Lee-Kramer shear apparatus attached to an Instron Universal testing machine. Patties, for cooked color measurement, were immediately placed in plastic bags and immersed in an ice-water bath to stop cooking. Then, patties were cut parallel to the surface of the patty and 3 color measurements (L*, a*, b* and spectral reflectance) were taken of the internal surface of the patty using a HunterLab MiniScan. In addition, consumer panelists (n = 150), who ate beef 3 or more times weekly, were selected from a pool of over 10,000. Patties for consumer testing were seasoned with 0.4-g of Montreal steak seasoning before cutting into 4 samples. Each panelist was given a sample from each treatment in a random order and asked to evaluate overall acceptability, beef flavor, and texture on a 7-point scale, and the presence of non-beef flavors more often in the 5% Noni products. Patties with Noni juice were more intensely saturated with color (greater chroma, P = 0.021) than those with Noni pulp. Consumers scored patties with 2.5% Noni similarly (P = 0.05) to controls for overall impression and flavor, but received greater (P = 0.007) scores for texture than those with 5% Noni. For the just-about-right scales of beef flavor and juiciness, consumers did not detect differences (P > 0.05) between control and Noni patties. Consumers also detected the presence of off-flavors more often in Noni patties than in controls (P = 0.0013), and more often in the 5% patties than in the 2.5% Noni patties (P < 0.0001). Noni incorporation was shown to decrease Lee-Kramer values, but consumers evaluated Noni-incorporated patties as less acceptable in texture. Furthermore, the 2.5% Noni patties had similar flavor and texture attributes to controls.

Keywords: Mixing time, Beef, Turkey

Effects of mixing time and a buffered vinegar/lemon juice concentrate on textural and sensory traits of cooked natural roast beef and turkey rolls

A. VanDeWalle*, D. Burson, R. Mandigo, H. Thippareddi, University of Nebraska, Lincoln, United States

The effects of mixing time on the quality of natural roast beef and turkey rolls formulated with or without buffered vinegar and lemon juice concentrate were evaluated. Natural oven roasted turkey and roast beef treatments were formulated with 1.5% sea salt, 0.5% turbidino sugar and 0% (control; C) or 2.5% buffered vinegar and lemon juice (LV). During processing, turkey products were mixed for 5, 10, 15, or 20 min, while beef was mixed for 2.5, 5, 10, 15, and 20 min. Mixing time had no effect on cooking yield of either turkey or beef rolls. As mixing time increased, L* (lightness) values increased (P < 0.05) for beef and turkey, and a* (redness) values decreased (P < 0.05) for beef rolls. Twenty minutes of mixing made the beef product springier (P < 0.05) than 2.5, 5, or 15 min. Consumer sensory panels rated beef mixed for 20 min tougher and drier (P < 0.05) than 2.5, 5, and 10 min mix time. Beef rolls with 2.5% LV had a greater (P < 0.05) cooking yield than C beef rolls. HunterLab L* and a* values for turkey roll slices were lower (P < 0.05) for LV treatments than for C. LV treated turkey samples were rated higher (P < 0.05) for sweetness, saltiness, tartness, and lingering of aftertaste by sensory panels; however, C had a higher (P < 0.05) turkey flavor rating. Beef LV treatments were rated higher (P < 0.05) for sweetness, tartness, lingering of aftertaste and overall flavor. An interaction (P < 0.05) between mixing time and treatment was found for b* values and hardness for beef slices. Mixing time can affect color and texture as increasing mixing time makes the final product color lighter for slices of beef and turkey and also decreases redness in beef. Mixing beef for more than 15 min can make the product tougher and drier. The addition of LV slightly increases product lightness and reduces product redness, especially in medium rare roast beef slices. However, the addition of LV can also enhance flavors in turkey rolls. Processors will need to critically evaluate mixing time and LV addition to natural beef and turkey products.

Keywords: Noni, Ground beef, Cooked color

The effect of kiwi juice injection on the palatability and retail color of eye of round steaks from cow carcasses

N. B. Myers*, S. B. Obando, C. C. Carr, D. D. Johnson, University of Florida, Gainesville, United States

Retail cuts originating from the chuck and round are generally tougher and more variable in tenderness than cuts from the rib and loin. Also, beef products from cattle of advanced maturity are tougher, due to the decreased solubility of connective tissue. Actinidin is a cysteine protease enzyme found abundantly in kiwi juice and has been shown to improve cooked meat tenderness when injected at 10% of the injection solution. The purpose of this study was to determine the effect of injecting kiwi juice into beef eye of round muscles from cow carcasses on traits evaluated by a trained panel, Warner-Batzler shear (WBS) analysis, and retail color acceptability. A pilot experiment was performed with eye of round roasts using a single needle injector to inject a 10% kiwi juice solution (83.5% water, 3.5% salt, and 3.0% phosphates) to 110% of the initial meat weight. After injection, the meat was vacuum packaged and held for 7 d. At the conclusion of the 7 d holding period the product was denatured too extensively for testing, indicating that brine containing 10% kiwi juice is too excessive for optimal tenderization, thus injection levels were modified for the primary experiment. At 3 d postmortem, 2 steaks were fabricated from the center of pairs of beef semitendinosus muscles (n = 10) from USDA Commercial carcasses, to serve as a negative control (NCON) for sensory and WBS analysis. One roast from each muscle was multi-needle injected to 110% of its initial weight with a control solution (CON; 93.5% water, 3.5% salt, and 3.0% phosphates) and the other roast from each muscle was injected with a solution with the same ingredients plus 2.5% or 5% kiwi juice in substitution for water. All samples were vacuum packaged and aged for 7 d. Steaks (n = 3) were then fabricated from the medial portion of each injected semitendinosus muscle. Steaks assigned to sensory and WBS were frozen, while steaks assigned to shelf life evaluation were placed in Styrofoam trays, overwrapped with PVC film.
and placed in coffin display cases where the cuts were objectively and subjectively evaluated daily. Sensory panelists found NCON steaks were tougher and had more connective tissue ($P<0.0001$) than CON or kiwi injected steaks which did not differ ($P=0.14$) for sensory tenderness or connective tissue. Panelists found CON steaks had higher juiciness scores ($P=0.01$) than steaks with 5% kiwi juice added. Panelists found NCON steaks to be less salty ($P<0.0001$) than CON steaks, with kiwi injected steaks being intermediate for saltiness. No differences ($P>0.33$) were noted between treatments for thaw or cooking loss, off flavor, or beef flavor intensity. NCON steaks tended ($P=0.075$) to have greater WBS values than steaks injected with 5% kiwi juice, but all steaks fabricated from injected muscles were similar for WBS. Steaks injected with CON solution had whiter ($P=0.005$) subjective fat color scores than kiwi juice injected steaks after 2 d of retail display. No other differences were found between injection treatments for subjective or objective measurements of color on the same retail display day. These results suggest that palatability and retail color of products injected to 110% of initial weight with a solution containing 2.5 or 5% kiwi juice did not differ from those injected with the control solution.

Keywords: Turkey, Pink color defect, Whey protein concentrate

Controlling pink color defect in cooked turkey product using a dehydrated whey protein concentrate
J. M. Pleitner*, J. R. Claus, University of Wisconsin-Madison, Madison, United States

Pink color defect affects cooked, uncured poultry products, causing them to appear uncooked and rendering them undesirable in consumers’ eyes. Previous research has demonstrated that citrate, lactoferrin, and calcium independently have the potential to reduce this pink color defect. These constituents can be found in various levels in commercially produced whey protein-based concentrates. A whey protein concentrate (WPC) known to contain these constituents was selected for its ability to reduce the pink color defect in a ground turkey breast model containing known pink generating ligands. Pink color-generating ligands (PGLs) were incorporated to determine if this WPC was able to prevent the pink color from occurring. Four treatments (replicated 3 times) were included in this study: a control (C) and 3 treatments (TRT). C served as the base formulation for all TRTs and contained ground turkey breast, water (20%), salt (2%), and sodium triphosphate (0.5%); TRT1 contained 2% added WPC; TRT2 contained 2% added WPC and 1% nicotinamide; and TRT3 contained 2% added WPC and 10 ppm sodium nitrite. Nicotinamide and sodium nitrite were added to induce a pink color in the turkey breast. All above ingredients were added on a meat weight basis. Addition of WPC increased ($P<0.0001$) CIE L^* (lightness) in all TRTs compared with C, while CIE b^* (yellowness) values were decreased in TRT2 and TRT3 ($P<0.0001$) compared with C and TRT1. CIE a^*, an indicator of redness, was similar ($P>0.05$) in C (1.27) and TRT1 (1.10); however, the addition of PGL increased ($P<0.0001$) a^* values in TRT2 (3.42) and TRT3 (3.86). Therefore, the inclusion of WPC in TRT2 and TRT3 was not able to reduce the CIE a^* to the same level as either the C or TRT1. C and TRT1 also showed a decreased ($P<0.05$) chroma value compared with TRT2 and TRT3. The pigments, nitrosylhemichrome (rNIT) and nicotinamide hemochrome (rNIC), were also studied using spectrophotometric analysis ($\%$R650 nm/$\%$R570 nm, $\%$R537 nm/$\%$R553 nm; respectively, lower value less pigment). C and TRT1 had lower ($P<0.05$) rNIC values compared with TRT2 and TRT3. Further, C and TRT1 had lower ($P<0.05$) rNIT values compared with TRT2 and TRT3. PGL in TRT2 and TRT3 caused a significant rise in their respective pigments. rNIC was highest ($P<0.05$) in TRT2, the TRT containing nicotinamide as a PGL; rNIT was highest ($P<0.05$) in TRT3, which contained sodium nitrite as part of its formulation. All TRTs demonstrated a higher ($P<0.0001$) percentage cook yield compared with C. There were no differences ($P>0.05$) in precook pH. In addition no differences in pH were found in the cooked turkey. The lack of pink color inhibition by this WPC could be the PGLs were added at a level too high for any control to be determined. In white muscle poultry, endogenous nitrite or as an exogenous contamination at a level 1–3 ppm has been found in commercial conditions. Since this WPC did not decrease the pink defect as reported with some other WPCs, this WPC may have potential if lower, more subtle levels of PGL are evaluated.

Keywords: Kiwi, Actinidin, Tenderness

Effects of sea salt on the tenderness and color of beef loin steaks

As the most common curing ingredient for meat products, salt has been known for enhancing meat palatability. Effect of salt on meat tenderness has also been documented, which can be used as an inexpensive value-adding mechanism for meat cuts. The objective of this study was to determine the effect of sea salt on Warner Bratzler shear force (WBSF) and instrument color of beef strip loin steaks. The study was conducted in 2 separate experiments. In the first experiment, 32 strip steaks (2.54-cm thickness and 0.3-cm external fat) from 4 USDA Select strip loins (8 steaks per loin) purchased from a local market (Lubbock, TX) were randomly (within each loin) assigned to either control (CO1) or one of the 3 following treatments ($n=8$): application of 6 g of sea salt to both sides of the steaks (SS1), application of 6 g of sea salt and 6 g of ground fresh garlic to both sides of the steaks (SSFG), and application of 6 g of sea salt and 4 g of powder garlic to both sides of the steaks (SSPG). All steaks in experiment 1 were allowed to rest for 2 h before analysis. The second experiment followed the same experimental design with 32 steaks from 4 USDA Choice strip loins that were randomly assigned to either control (CO2) or one of the following 3 treatments ($n=8$): application of 12 g of sea salt to both sides of the steaks (SS21) for 1 h, resting the steaks on a layer (0.5 cm) of sea salt for 1 h (SS22), and resting the steaks in sealed vesicle containing a layer (0.5 cm) of sea salt but without direct contact with the salt for 24 h (SS23). The treated steaks in experiment 1 were rinsed with water and dried with a paper towel after the 2-h resting period, whereas those in experiment 2 were brushed to remove visible salt crystals after their respective treatment application period. The steaks were subsequently subjected to instrumental color and WBSF analyses. Results from experiment 1 indicated sea salt decreased WBSF of steaks ($P<0.001$) compared with CO1, except when combined with fresh garlic ($P=0.655$). The WBSF values for SS1 and SSFG were 2.28 and 2.45 kg, respectively, with CO1 and SSFG yielding WBSF values of 2.95 and 3.03 kg, respectively. In experiment 2, SS21 and SS22 had similar WBSF compared with CO2 (3.47 to 3.70 kg; $P=0.341$ to 0.874). However, SS23 decreased WBSF (2.69 kg; $P<0.001$) compared with CO2, SS21, and SS22. The application of sea salt decreased the lightness and redness of steak lean surface in both experiments ($P<0.001$), although the effect was more profound in experiment 1 when garlic was used (a^* values of 3.69 and 5.36 for SSFG and SSFPG vs. a^* values of 15.40 and 8.06 for CO1 and SS1, respectively; $P<0.001$). In experiment 1, the 3 sea salt treatments yielded 3% lower cook losses (20.14 to 21.21%) compared with CO1 (24.79%; $P<0.001$). In experiment 2, SS22 had lower cook loss than CO2, SS21, and SS23 (20.77% vs. 22.19 to 23.36%; $P=0.015$). The application of sea salt can be a simple method to increase tenderness; however, further investigation is needed to determine the optimal salt concentration and the method of applying salt to meat cuts. Although the change in color of steak lean surface may limit application, the
enhanced palatability may overcome this limitation in a foodservice setting.

Keywords: Sea salt, Beef loin steak, Tenderness

Determining the yield, proximate composition, and color characteristics of trimmings from hot processed and traditionally processed cull doe goats

L. A. Weber*, T. A. Houser, E. A. Boyle, B. R. Faris, C. L. Kastner, B. M. Gerlach, A. D. Stickel, M. J. Weber, Kansas State University, Manhattan, United States

The objective of this study was to identify the yield, composition, and color attributes of trimmings from hot processed and traditionally processed cull meat goats. Crossbred cull doe goats (n = 18) were purchased from a livestock sale facility in Yates Center, KS and transported to the Kansas State University Sheep and Goat Teaching Facility. Six randomly selected goats were harvested at the Kansas State University Meat Laboratory on 3 separate days. After slaughter, evisceration, and splitting, one side of each carcass was randomly assigned to either a hot processed (HP) or traditionally processed treatment (TP). The mean live weight of the goats immediately before slaughter was 41.0 kg with a range of 22.0–64.0 kg. The mean carcass side weight for the HP and TP sides was 8.6 and 8.8 kg respectively. Sides from the HP treatment were fabricated, ground with 2% NaCl, and chilled with the addition of dry ice to reach 2 °C within 2 h following exsanguination. After chilling the HP trimmings were held at 2 °C until sampling occurred 24 h postmortem. TP carcass sides were conventionally chilled at an ambient air temperature of 2 °C before fabrication. TP carcasses were fabricated 24 h postmortem and then ground and mixed with or without the addition of 2% NaCl resulting in 2 traditionally processed treatments (TPNS and TPS, respectively). At 24 h postmortem, samples were taken for pH, trim yield, water holding capacity (WHC), fat, moisture, protein, and instrumental color including lightness (L*), redness (a*), and yellowness (b*). The HP treatment possessed a higher (P < 0.0001) 24 h pH of 6.30 compared with a 6.06 pH for the TP treatment. There were no differences (P > 0.06) in the yield of trimmings between the HP treatment (6.35 kg) and TP treatment (6.50 kg). The HP treatments had higher WHC compared with both TPS and TPNS (P < 0.002) treatments. HP (70.0%) and TPNS (70.1%) treatments had higher (P < 0.0001) moisture content than TPS (68.8%). Fat content was similar (P > 0.19) for all treatments with mean values ranging from 9.6 to 10.6%. However, TPNS had more protein (P < 0.0001) than the HP treatment. The TPS treatment had higher (P < 0.05) a* values compared with HP and TPNS treatments. Finally, the HP treatment had lower (P < 0.05) a* and b* values compared with the traditionally processed treatments. In summary, differences in processing techniques did not result in differences in trim yield, moisture or fat content. Hot processing increased 24 h pH and WHC. Furthermore, hot processing decreased redness and yellowness of trimmings from cull goat carcasses compared with traditional chilling and processing techniques.

Keywords: Salt, Protein, Extraction

Antibacterial activity of essential oils of two thymus species in meat homogenates

The presence and growth of bacteria in meat and meat products may cause spoilage. Indeed, it can cause food-borne illnesses. A range of synthetic agents have been used to inhibit the bacterial growth in meat products, although concerns about the safety of these chemicals have increased consumer demand for natural food products. Essential oils (EOs) obtained from many plants have recently gained in popularity and excited scientific interest. The antimicrobial properties of aromatic plant essentials oils have been widely assessed in a wide variety of foods. The aim of this study was to quantify the amount of salt-soluble proteins in various muscles of 3 species commonly used in meat products - beef, pork, and chicken. The study was designed as a complete randomized design in a 2 × 3 factorial arrangement. The factors for this experiment were muscle type (light and dark) and species (beef, chicken and pork). Pork and beef samples were whole muscles, serratus ventralis (dark) and semitendinosus (light), which are commonly utilized as trim for further processing. Chicken samples were pectoralis major muscle (light) and the entire thigh (dark). In all, there were 5 independent samples from each muscle type for all 3 species (n = 30). Meat was trimmed of external fat, homogenized, vacuum packaged and stored at −29 °C until analyses were conducted. Samples were analyzed for proximate composition and salt-soluble protein content at salt (NaCl) concentrations of 0%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%. Data were expressed as the percentage of salt soluble proteins on a solids (weight minus fat and moisture) basis due to differences in fat content between muscles and species. Data were analyzed using the mixed procedure of SAS with a model including the main effects of species, muscle type, salt and their interactions. Means were separated using the PDFF option. Overall, chicken showed greater protein extraction (P < 0.001) than beef and pork, which were equal to each other. At all salt concentrations, chicken light muscle showed the greatest extractability for all muscle type and species combinations. There were no differences between muscle types for pork or beef. However, chicken light muscle had higher values of extractable proteins compared with chicken dark muscle (P < 0.001) at all salt concentration levels. This study suggests that the use of chicken in further processed products could reduce the amount of salt needed as adequate levels of extractable proteins are achieved in chicken muscles at lower salt concentrations when compared with beef and pork.

Keywords: Goats, Hot processed, pH

Extraction of salt-soluble proteins in meat is affected by species and muscle type

B. D. Keever*, D. D. Boler, J. Killefer, F. K. McKeith, A. C. Dilger, University of Illinois, Urbana, United States

When forming a meat emulsion, salt-soluble myofibrillar proteins are the main contributors to the matrix followed by sarcoplasmic proteins. The quantity and functionality of these proteins are dependent on factors such as species, sex and age of the animal, as well as pre-slaughter and post-mortem treatment. The purpose of this experiment was to quantify the amount of salt-soluble proteins in various muscles of 3 species commonly used in meat products - beef, pork, and chicken. The study was designed as a complete randomized design in a 2 × 3 factorial arrangement. The factors for this experiment were muscle type (light and dark) and species (beef, chicken and pork). Pork and beef samples were whole muscles, serratus ventralis (dark) and semitendinosus (light), which are commonly utilized as trim for further processing. Chicken samples were pectoralis major muscle (light) and the entire thigh (dark). In all, there were 5 independent samples from each muscle type for all 3 species (n = 30). Meat was trimmed of external fat, homogenized, vacuum packaged and stored at −29 °C until analyses were conducted. Samples were analyzed for proximate composition and salt-soluble protein content at salt (NaCl) concentrations of 0%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%. Data were expressed as the percentage of salt soluble proteins on a solids (weight minus fat and moisture) basis due to differences in fat content between muscles and species. Data were analyzed using the mixed procedure of SAS with a model including the main effects of species, muscle type, salt and their interactions. Means were separated using the PDFF option. Overall, chicken showed greater protein extraction (P < 0.001) than beef and pork, which were equal to each other. At all salt concentrations, chicken light muscle showed the greatest extractability for all muscle type and species combinations. There were no differences between muscle types for pork or beef. However, chicken light muscle had higher values of extractable proteins compared with chicken dark muscle (P < 0.001) at all salt concentration levels. This study suggests that the use of chicken in further processed products could reduce the amount of salt needed as adequate levels of extractable proteins are achieved in chicken muscles at lower salt concentrations when compared with beef and pork.

Keywords: Salt, Protein, Extraction
T. piperella EO showed ($P<0.05$) the highest antibacterial activity against the 2 bacteria tested, with inhibition zones ranging from 25.00 mm on L. innocua and 32.00 mm on A. hydrophila. In the case of T. moroderi EO showed ($P<0.05$) inhibition zones of 14.00 and 15.00 mm for L. innocua and A. hydrophila respectively. For dry cured meat, any of the 2 EOs did not show ($P>0.05$) inhibitory capacity against the bacterial strain tested. Regarding cooked meat T. piperella EO presented higher antibacterial activity ($P<0.05$) than T. moroderi EO. For L. innocua, T. piperella produced an average zone of inhibition of 20.5 mm, while T. moroderi was non active. For A. hydrophila, T. moroderi and T. piperella showed ($P<0.05$) inhibition zones of 18.00 and 25.00 mm respectively. Regarding to CE, in minced meat, T. piperella EO showed ($P<0.05$) inhibitory effect, in all added concentrations, for both, A. hydrophila and L. innocua, while T. moroderi EO did not show inhibitory effects at lower concentrations. In dry cured meat any of the 2 EOs studied did not show inhibitory effects in any added concentrations for the 2 strain tested. In cooked meat the T. piperella EO showed inhibitory effects ($P<0.05$) in all added concentrations, except the lowest for both, A. hydrophila and L. innocua. T. moroderi EO did not present ($P>0.05$) inhibitory effect in all concentrations added for L. innocua. In the case of A. hydrophila it showed inhibitory zones at higher concentrations. In summary, the essential oils of T. piperella and T. moroderi can be used to control the growth of bacteria related with the food spoilage in a variety of meat and meat products.

Keywords: Essential oils, Antibacterial, Meat products

Effect of intrinsic factors on growth of Listeria monocytogenes in sliced deli turkey roast

T. L. Roena, E. A. E. Boyle, K. J. Getty, N. M. Harper, M. J. Weber, A. S. Lobatan-Sulabo, M. C. Hunt, J. J. Higgins, Kansas State University, Manhattan, United States

Intrinsic factors have an impact on the growth of Listeria monocytogenes in ready-to-eat meat and poultry products. The growth of L. monocytogenes was determined in sliced turkey deli roast formulated with in-going concentrations of 1.5% sodium chloride (NaCl) or 0.75% NaCl and 0.75% potassium chloride, 0 ppm or 200 ppm sodium nitrite (NaNO2), and using 10% or 45% pump for a total of 8 treatment combinations. Turkey deli slices were inoculated with a 5-strain L. monocytogenes cocktail or peptone water (control), vacuum packaged and stored at 4 °C. Treatments were sampled on d 0, 7, 14, 21, 28, 42, 63, and 91 of storage to determine L. monocytogenes mean log growth enumerated using modified oxford media, and aerobic plate count (APC). The pH, water activity (a_w), nitrite concentration, and percent fat, moisture, protein, and salt were measured using control treatments on each sampling day. There was a nitrite by day interaction ($P<0.05$) and a percent pump by day interaction ($P<0.05$) for L. monocytogenes and APC mean log growth (cfu/cm²). L. monocytogenes populations were reduced by 0.5 to 2.25 log cfu/cm² from d 7 through 91 of 4 °C storage with inclusion of 200 ppm NaNO2 vs. 0 ppm NaNO2. Using 10% pump reduced L. monocytogenes populations by 0.5 to 1.5 log cfu/cm² from d 7 to 28 and at d 63 compared with 45% pump. APC populations were 0.75 to 3.0 log cfu/cm² lower from d 7 through 91 of 4 °C storage with inclusion of 200 ppm NaNO2 vs. 0 ppm NaNO2. Using 10% pump reduced APC populations by 1.25 to 2.6 log cfu/cm² from d 7 to 91 compared with 45% pump. Salt type did not affect L. monocytogenes or APC growth ($P>0.05$) during 91 d of 4 °C storage. Water activity was 0.966 to 0.979 and was lower ($P<0.05$) for treatments with 10% pump compared with 45% pump. Moisture content in treatments with 10% pump was similar ($P>0.05$) with a mean 73.5% moisture, however, there were differences ($P<0.05$) in moisture content among treatments with 45% pump. These ranged from 77.5% to 78.7%. Percent protein in treatments with 45% pump was similar ($P>0.05$) with a mean 15.3% protein, however, there were differences ($P<0.05$) in percent protein among treatments with 45% pump. These ranged from 17.9% to 19.2%. Percent salt was different ($P>0.05$) among treatments and ranged from 1.78% to 2.56%. There was no ($P<0.05$) treatment interaction for percent fat which averaged 0.67% or pH which averaged 6.2. Growth of L. monocytogenes and APC is influenced by nitrite concentration and percent pump, while inclusion of NaCl or NaCl and KCl did not affect L. monocytogenes growth during refrigerated storage in sliced deli turkey.

Keywords: Listeria monocytogenes, Turkey, Intrinsic factors
Inhibitory effect of Provian (a co-spray dried mixture of sodium lactate and sodium acetate) on the growth of *Listeria monocytogenes* in low-sodium frankfurters stored at 4, 7, or 10 °C

G. Hessell*, L. Zhang, Y. Xu, E. Ryser, J. Jeong, J. Harte, I. Kang, Michigan State University, United States

Powdered additives have many advantages compared with liquids in handling, mixing, storing, and shipping. This research aimed at evaluating the effect of Provian powder (PP, a co-spray dried mixture of sodium lactate and sodium acetate), Provian D (PD, a mixture of Provian and sodium diacetate) from Kemira ChemSolutions b.v., Netherlands, and one liquid inhibitor on *Listeria* infection, organoleptic quality, and physicochemical properties of frankfurters. In each of 3 replications, 4 batches (22.7 kg/batch) of low sodium frankfurters (1.0% salt addition) were prepared according to the following formulations: control (no inhibitors), 1% PP, 0.65% PD, and 2.5% (v/w) of 60% potassium lactate and sodium lactate diacetate (PL-SD), and then dip-inoculated in a 6-strain cocktail of *Listeria monocytogenes*. Growth of *Listeria* and mesophilic aerobic bacteria (MAB) was evaluated at 4, 7, and 10 °C for up to 90 d. The concentration of *Listeria monocytogenes* used was 4 log cfu/g. Using PP, PD and PL-SD, *Listeria* populations increased ~2 log cfu/g during 60 and 30 d of storage at 4 and 7 °C, respectively. However, *Listeria* grew to 7 log cfu/g in the control after 15 and 30 d at 4 and 7 °C, respectively, with almost no inhibition seen in any formulations at 10 °C. The same 3 inhibitors suppressed the growth of MAB by ~2 log cfu/g, compared with the control. No significant differences (P>0.05) were seen in appearance, texture, flavor, or overall acceptability regardless of formulation. Frankfurter containing PP and PD were higher in sodium content than PL-SD and the control. Given these findings along with similar cook yields, Provian powder (PP) appears to provide a viable alternative to liquid (PL-SD) with no negative impact on organoleptic quality.

Keywords: Frankfurter, *Listeria monocytogenes*, Sensory

Decontaminating beef subprimals destined for non-intact products by using combinations of water washing and/or trimming

J. L. Lemmons*, K. B. Harris, A. N. Haneklaus, M. D. Hardin, L. M. Lucia, J. W. Savell, Texas A&M University, College Station, United States

Previous research has shown the prevalence of *Escherichia coli* O157:H7 on beef subprimals is low; however, if present, blade tenderization could force pathogens into the muscle. FSIS declares raw, non-intact beef as adulterated if it contains *E. coli* O157:H7. To adequately remove *E. coli* O157:H7 from chilled subprimals, it is imperative to understand how contamination can spread during vacuum packaging. The potential translocation of *E. coli* O157:H7 and the impact of water washing and partial- or full-surface trimming as a pathogen reduction strategy were evaluated. Beef top sirloin butts (cap-on and cap-off) were inoculated with 2 levels (high-inoculum at ~10⁴ cfu/cm²; low-inoculum at ~10³ cfu/cm²) of a 3-strain cocktail of rifampicin-resistant *E. coli* O157:H7. Following inoculation, subprimals were vacuum packaged and stored for either 0, 14, or 28 d. After storage, the following sites were evaluated: exterior of the bag, purge, inoculation site on the subprimal, area adjacent to the inoculation site, and surface opposite from the inoculation site. Seven treatments then were applied: water wash, water wash followed by full-surface trimming, water wash followed by partial-surface trimming, full-surface trimming, full-surface trimming followed by water wash, partial-surface trimming, and partial-surface trimming followed by water wash. Translocation from the inoculated surface area to other areas of the subprimal was observed. Counts of *E. coli* O157:H7 recovered varied by storage day and cap-on and cap-off subprimals, but no microbiologically relevant differences were detected. Translocation to other subprimal surfaces could have been caused by purge. *E. coli* O157:H7 levels (high: 4.4 log₁₀ cfu/ml; low: 2.1 log₁₀ cfu/ml) found in purge were similar to initial inoculum levels for both high and low inocula. Contamination was also detected on exterior surfaces of the bags; 12.5% of bags from high-inoculated sirloins were contaminated, as opposed to only 1% of bags from low-inoculated sirloins. Water washing alone had little to no effect on the level of *E. coli* O157:H7 recovered from any subprimal surface, for both high and low inoculated sirloins. Less than a 1.0 log₁₀ cfu/cm² difference was observed between counts recovered before treatment and counts recovered after water washing. Full and partial-surface trimming alone significantly decreased counts recovered from the dorsal surface by 3.0 to 4.0 log₁₀ cfu/cm². However, on the ventral side, full-surface trimming was much more effective than partial-surface trimming; partially trimmed sirloins often had counts at least 0.5 to 1.0 log₁₀ cfu/cm² higher than fully trimmed sirloins. Water washing combined with trimming had little to no additional effect on the counts recovered, with less than a 0.5 log₁₀ cfu/cm² difference often detected between trimming alone and trimming combined with water washing. Of the treatments applied, water washing and partial-surface trimming were the least effective for both high and low inoculated subprimals. Full trimming, with or without water wash, proved to be the most effective treatment used to reduce *E. coli* O157:H7 to non-detectable levels.

Keywords: *Escherichia coli* O157:H7, Beef, Decontamination

The impact of peroxyacetic acid and other novel organic acids as single antimicrobial interventions for the control of *Escherichia coli* O157:H7 in inoculated beef trimmings as measured by traditional plate count and *Listmus RAPID-B* rapid enumeration

A. Mohan*, S. R. Milillo³, F. W. Pohlan², S. C. Ricke³, P. N. Dias-Morse², J. A. McDaniel², C. A. O’Bryan³, A. Makowski³, P. G. Crandall³, G. Hessell*, L. Zhang, Y. Xu, E. Ryser, J. Jeong, J. Harte, I. Kang, Morse a, J. A. McDaniela, C. A. O’Bryanb, A. Makowskib, P. G. Crandallb, ¹Department of Animal Science, University of Arkansas, Fayetteville, United States, ²Department of Food Science, University of Arkansas, Fayetteville, United States

Ground beef is characterized as a commodity of highest potential risk of food borne illness. Since ground beef is sourced from different cattle and locations, along with the grinding and mixing operations during ground beef production could potentially transfer pathogens to uncontaminated product. In the past decades, *E. coli* O157:H7 has emerged as a high profile food-borne pathogen and frequent ground beef product recalls due to *E. coli* O157:H7 contamination continues to be a serious concern to the US meat industry and consumers. Therefore, our objective was to determine the antimicrobial efficacies of different concentrations of peroxyacetic and other novel food grade organic acids on reduction of *E. coli* O157:H7 on beef trimmings. A model system was developed to mimic a commercial dip treatment system for beef trimmings. Inoculated beef trimmings with *E. coli* O157:H7 (10⁵ cfu/g; 25 g/treatment) were processed with antimicrobial treatments by dipping for 15 s in 100 mL solution of peroxyacetic acid (PAAs; 100, 150, and 200 ppm) and 3% of novel organic acids [fumaric acid (FA); malic acid (MA); citric acid (CA); gluconic acid (GA); levulinic acid (LA); pyruvic acid (PY); caproic acid (CO), caprylic acid (CL), and capric acid (CP)]. Following antimicrobial treatment, beef trim were spread plated using serial 10-fold dilution in duplicates on aerobic plate count (APC), *E. coli* (EC)/coliform (CO) Petrifilm plates, and via the *Listmus RAPID-B* Ec. coli O157 assay. Plated samples were incubated at 37 °C for up to 48 h in an aerobic incubation chamber and the RAPID-B samples were analyzed immediately. Inoculated beef trimmings treated with and without water (IN; IN+W) and un-inoculated (UN) samples served as controls. Among all, CL was most effective in reducing more than
Results suggest that incorporation of a surfactant did not enhance the antimicrobial efficacies of PAA and other novel organic acids tested in this study. Organic acids and PAA without EG exhibited deleterious effects on survival of EC, CO, and APC. CL without EG reduced more than 5-logs of EC and CO, and 3.38 logs of APC, however, when combined with EG, the same treatment yielded only 1.36, 1.67, and 2.16-logs of reduction of EC, CO, and of APC respectively. Incorporation of EG with other organic acids resulted in no enhancement in microbial reduction. Treatment of beef trimmings with PAA, LA, and CO without EG resulted in no reduction of EC, CO, and APC. The results of this study indicated that CL, PY, and MA were the most effective antimicrobial treatments in reducing *E. coli* O157:H7 population on beef trimmings and that in most cases the Litmus RAPID-B *E. coli* O157 assay was able to immediately produce results consistent with those determined by plating.

Keywords: Antimicrobial interventions, Peroxyacetic acid, Novel organic acids, *Escherichia coli* O157:H7, Litmus RAPID-B, Ground beef safety

Effects of novel organic acids and ethoxylated glycerol against *Escherichia coli* O157:H7 as antimicrobial interventions for inoculated beef trimmings

b Department of Animal Science, University of Arkansas, Fayetteville, United States, c Department of Food Science, University of Arkansas, Fayetteville, United States

Frequent ground beef product recalls mandates the need to implement more effective decontamination strategies of beef trimmings intended for the production of ground beef. Microbial safety of the ground beef produced from beef trimmings will be advantageous in reducing the incidents of food-borne pathogens and consequent safety recalls. Current decontamination techniques applied during the production chain of ground beef are not yet sufficient, and continues to pose serious concern to the US meat industry and consumers. Ground beef is generally stored and/or displayed at low temperature (2–5 °C). Although, the microbial growth is minimal at this temperature, presence of any foodborne pathogens in ground beef products can challenge product safety. Therefore, the objective of this study was to investigate the antimicrobial efficacy of peroxyacetic acid and other novel food grade organic acids with or without a non-ionic surfactant (ethoxylated glycerol; EG) on reduction of *E. coli* O157:H7 on beef trimmings. Experiments were conducted to determine the antimicrobial efficacies of peroxyacetic acid (PAA; 200 ppm) and 3% of other novel organic acids [malic acid (MA); levulinic acid (LA); pyruvic acid (PY); capric acid (CO), caprylic acid (CL)] with and without non-ionic surfactant (EG) on reduction of *E. coli* O157:H7 on beef trimmings. A model system was developed to mimic a commercial dip treatment by randomly removing 25 g piece of beef trimming. To achieve 10² cfu/g of *E. coli* O157:H7, inoculated beef trimmings were processed with antimicrobial treatments by dipping in 100 mL solution of novel organic acids for 15 s with and without EG (0.5%). Following antimicrobial treatment, beef trim was stomached for 2 min with 225 mL of 0.1% buffered peptone water and spread plated in duplicates on aerobic plate count (APC), and *E. coli* O157:H7 (EC)/coliform (CO) counts of Petri film plates using serial 10-fold dilutions scheme. Samples were incubated at 37 °C in an aerobic incubation chamber. Inoculated beef trimming treated with and without water (IN; IN+W) and un-inoculated (UN) samples served as controls. Results suggest that incorporation of a surfactant did not enhance the antimicrobial efficacies of PAA and other novel organic acids tested in this study. Organic acids and PAA without EG exhibited deleterious effects on survival of EC, CO, and APC. CL without EG reduced more than 5-logs of EC and CO, and 3.38 logs of APC, however, when combined with EG, the same treatment yielded only 1.36, 1.67, and 2.16-logs of reduction of EC, CO, and of APC respectively. Incorporation of EG with other organic acids resulted in no enhancement in microbial reduction. Treatment of beef trimmings with PAA, LA, and CO without EG resulted in no reduction of EC, CO, and APC. The results of this study indicated that CL, PY, and MA were the most effective antimicrobial treatments in reducing *E. coli* O157:H7 population on beef trimmings and incorporation of EG exhibited no enhancement in microbial efficacy.

Keywords: Antimicrobial interventions, Novel organic acids, Non-ionic surfactant, *Escherichia coli* O157:H7, Ground beef safety

The potential for cultured sugar and vinegar to inhibit *Clostridium botulinum* in uncured ham

P. Sijtsemab,*, R. Zumbriknc, JD Stopfortha, D. Visserb, R. Jonesa, Purac, Gorinchem, The Netherlands, b Purac, Lincolnshire, IL, United States

Clostridium botulinum poses a health threat in processed meat products due to its ability to form toxins. Suppression of toxin formation has traditionally been achieved by adding nitrite, which has disadvantages due to its perceived health impact. Cultured sugar formulations have been proposed as an alternative inhibitor of toxin production and have also been shown to reduce the growth of spoilage species including *Clostridium perfringens*. In the present study the ability of a cultured sugar/vinegar formulation (PuraQ® Verdad NV55 — a mixture of organic acids produced by fermentation) to inhibit the growth of *Clostridium botulinum* in vacuum-packaged uncured hams prepared from top-side pork and stored at 3 different temperatures was evaluated using a *Cl. sporogenes* model. Hams were prepared from pork topside (80%), water (14.5%), modified corn starch (2%), malto-dextrine (1.5%), sodium chloride (1%), carrageenan (0.7%) and sodium tri-polyphosphate (0.3%). Four levels of added formulation were compared: 2, 3, 4 and 5%. Formulations were added to the brine before addition to the meat. Replicate (2) hams were inoculated with *Cl. sporogenes* at a level of 100 cfu/g before storage. Organisms were added to the shredded meat during preparation in a bowl chopper. After 3 d incubation at 30 °C, Puratex® Verdad NV55 levels ranging between 3% and 5% were associated with reduced *Cl. sporogenes* populations of between 1 and 3 log cfu/g respectively compared with untreated uncured control ham (*P*<0.05). Reduction was more pronounced at 20 °C incubation with inhibition of growth for up to 50 d in hams treated with 4% or 5% PuraQ Verdad NV55 (*P*<0.05). No growth occurred at 12 °C. These results indicate that PuraQ Verdad NV55 may be effective for inhibiting the growth of *Cl. botulinum* and production of toxins in stored hams during storage.

Keywords: Food safety, *Clostridium botulinum*, Cultured sugar

Lactic acid spray reduces *Campylobacter* and *Pseudomonas* on hot poultry carcasses

RJ Jonesb,*, D. Visserb, L. Galliganc, D. Burfootc, M. Fieldd, Purac, Gorinchem, The Netherlands, b Purac, Lincolnshire, IL, United States, c Campden Technology Ltd., Chipping Campden, UK, d Two Sisters Food Group, West Bromwich, UK

Lactic acid (LA) sprayed onto meat surfaces can reduce specific microbial populations by meaningful amounts. In a case study, changes
in naturally acquired bacterial populations were examined on sets of 36 commercially processed poultry carcasses sprayed with or without 4% buffered LA solution either before (hot carcasses) or after (cold carcasses) chilling. Carcasses received an average of 19 g/kg spray delivered as 17 s bursts at 122 g/min using an electrostatic spray system previously determined to give even coverage with droplet sizes of 40 μm VMD (Volume Median Diameter). Microbiological testing was performed using standard methods on homogenates prepared from surface samples removed by excision. Statistical interpretation of non-normally distributed data was performed using qualitative analysis of residuals. Differences reported were either strong or very strong. An average of 5 g and 11 g of applied solution was retained per kg carcass weight respectively, with the differences attributed to levels of retention within the cavity. For hot carcasses, LA treatment was associated with an initial 0.27 log reduction in aerobic populations (APC) increasing to 1.25 log after 6 d aerobic storage at 4 °C. *E. coli* and coliforms were initially undetectable on hot carcasses after treatment but recovered to levels of viability similar to untreated controls after 6 d storage. *Campylobacter* were also initially undetectable on hot carcasses after treatment and after 6 d storage was present at levels lower than those measured on untreated controls. *Campylobacter* were not observed to be eliminated from individual carcasses. *Pseudomonas* were present on hot carcasses at levels similar to untreated controls initially, but were observed to be an average of 0.76 log lower after 6 d storage. Compared with hot carcasses, cold carcass treatments produced lower levels of microbial reduction generally. For example, *Campylobacter* populations were detectable initially and recovery was greater than for hot carcasses after 6 d storage. Similarly, *Pseudomonas* populations were higher after 6 d storage for cold carcasses than for hot carcasses. The results of this study indicate that LA, when used as a surface spray on hot carcasses, can be an effective means of reducing the viability of *Campylobacter* and *Pseudomonas* populations for at least 6 d at 4 °C storage.

Keywords: Food safety, *Campylobacter*, Poultry

Stability of biophotonic *Ecoli* O157:H7 and its effectiveness as a validation tool in beef purge sampling methodologies

P. R. Broadway*, J. M. Behrends, C. M. Leick, H. A. Duoss, P. Ryan, T. B. Schmidt, Mississippi State University, Mississippi State, MS, United States

Escherichia coli O157:H7 continues to be a concern for the beef industry and has caused numerous recalls and foodborne illnesses in the United States. The objectives of this study were to determine stability and survivability of biophotonic *E. coli* O157:H7 (BEC), determine if BEC can be an effective real-time tool to validate industry sampling practices, and determine if purge is an effective method to test *E. coli* O157:H7 contamination in beef trim combos. In phase I, 2 separate temperatures (2.2 °C and 37 °C) were used to determine stability and survivability of BEC. Cultures of BEC (n = 3) were placed in a 2.2 °C cooler for 192 h and sampled at 24 h intervals to monitor growth and photonic emission. Concentration of the bacteria remained constant (P = 0.05) and photonic emissions (RLU/s) did not change (P = 0.05), resulting in a positive correlation between RLU/s and cfu/mL (P = 0.01; r = 0.5718). Additional cultures of BEC (n = 3) were placed in a 37 °C forced air orbital shaker and sampled in fresh tryptic soy (TS) broth daily for a 24 h incubation time to determine photonic emissions through 10 d of replication. The BEC concentrations did not change during 7 d of replication and sampling (P = 0.05); however, cfu/mL increased on d 8–10 (P < 0.05). In phase II, cylinders (30.48 cm × 15.24 cm; n = 2) were filled with fresh beef trim pieces (5 cm³) and one 5 cm³ piece for each cylinder was inoculated with 5 × 10⁻⁷ cfu/mL *E. coli* O157:H7 and placed on top of the trim to determine purge amounts and bacteria migration. Purge was sampled for 48 h at 4 h intervals in sterile beakers to monitor volume and photonic emissions. Purge quantity decreased (P < 0.05) between 0 and 8 h then increased (P < 0.05) at 24 h. Purge from cylinder A was found positive for photonic emission at 4 h–32 h. Purge from cylinder B was positive for BEC from 4 h–16 h and again at 48 h. Phase III was designed to represent current industry size of trim and test the effectiveness of sampling purge in beef trim combos. Columns (91.44 cm × 15.24 cm; n = 8) were used to simulate height of beef trim combos. Two different beef trim levels (80/20 and 65/35% lean/% fat) were obtained from a harvest facility after 72 h postmortem and columns were filled with 13.57 kg of either 80/20 or 65/35 trim and placed in a cooler (2.2 °C). One piece of trim for each column was inoculated with 4.0 × 10⁻⁷ *BEC* (n = 2/trim level) and placed at the top of each (controls – not inoculated). Purge was collected at 4, 8, 12, 16, 20, 24, 36, and 48 h in sterile beakers to monitor purge quantity and photonic emission. Purge was not present at each time point; however, when purge was collected, quantities were small (<200 μL). No photonic emission was found in the purge samples, and no cfus were present when purge was plated on TS agar + kanamycin (30 μg/mL). Purge sampling was more effective when collected from smaller pieces (phase II), possibly due to increased surface area and shorter migration distance versus purge sampling in phase III. Purge may have inconsistent quantities in differing beef trim combos and further research should be conducted on sampling methods for purge in beef combos.

Keywords: *E. coli*, Validation, Purge

Inactivation at various temperatures of bovine viral diarrhea virus in meat derived from persistently infected cattle

C. L. Bratcher*, B. S. Wilborn, H. M. Finegan, S. P. Rodning, P. K. Galik, K. P. Riddell, M. S. Marley, Y. Zhang, L. N. Bell, M. D. Givens, Auburn University, Auburn, AL, United States

Bovine viral diarrhea virus (BVDV) is a pathogen that causes gastrointestinal, respiratory and reproductive disease in cattle. Based on available research, BVDV is not considered zoonotic. Our research objective was to evaluate the detectable concentration of BVDV in 4 primal cuts of beef from persistently infected (PI) animals immediately after slaughter, aging, freezing, and cooking to variable temperatures. Six PI beef cattle were humanely harvested. These 6 animals were infected with a genotype 1a (n = 4), genotype 1b (n = 1) or genotype 2 (n = 1) strain of BVDV. Five gram samples cut from the interior of primal cuts (chuck, rib, loin, and round) were removed fresh (Day 0) and after aging for 2, 7, 14, and 21 d. Furthermore, these 4 primal cuts sampled from the interior of a steak and 3 ground products (ground chuck, ground round, and ground beef) sampled as grab samples were prepared from each carcass after 2 d of aging, frozen, thawed and assayed for BVDV raw or after cooking to 55, 60, 65, 70, 75, and 85 °C. All samples of beef were assayed for detection and titration of infectious BVDV using virus isolation after being minced with sterile scissors and subsequently blended in a commerical blender. The concentration of BVDV in beef after aging varied significantly depending on the duration of aging (P = 0.05) but not depending on the cut of meat or the animal. The concentration of BVDV in frozen, thawed, uncooked beef varied significantly depending on preparation as a ground product compared with not ground (P = 0.01). The average cell culture infective doses (50% endpoint; CCID₅₀) of intact meat was 10⁵ ± 10⁵ CCID₅₀/g of ground meat. The cut of meat, preparation as a ground product, or animal did not significantly impact detection of BVDV after cooking to any temperature. Results demonstrate that viable BVDV in beef survives aging, freezing, and thawing. To destroy BVDV in beef cuts, internal temperatures must exceed 70 °C during cooking. This
Evaluating electrostatic spray application of antimicrobials in sequential treatment combinations on product safety and instrumental color qualities of beef Biceps femoris muscles

J. A. McDaniel1*, T. L. Devinea, K. L. Beersc, 1University of Arkansas Dept. Animal Science, Fayetteville, United States, 2University of Arkansas Dept. Food Science, Fayetteville, United States, 3Safe Foods Corporation, Little Rock, AR, United States

Beef product safety is a serious concern for the meat industry as microbial pathogens can be introduced to muscle surfaces at various sources during processing. Studies have suggested that the use of antimicrobial agents and novel spray techniques as antimicrobials may reduce the microbial load in beef products. Therefore, the objective of this study was to evaluate the effectiveness of antimicrobial sequential treatment combinations on microbiological and instrumental color characteristics of beef Biceps femoris muscles treated at the sub-primal level. Beef Biceps femoris muscle (n=12) were cut into 3 subsections (n=36 total subsections) and were dipped in inoculum containing Escherichia coli (EC; ATCC#11775) and Salmonella Typhimurium (ST; ATCC#1769NR) at 10^7 cfu/mL. Each subsection was treated using a commercial electrostatic sprayer (3 mL/sec/60 psi) with either: (1) 20% hydrochloric/citric (Citrilow) acid mixture followed by 0.4% cetylpyridinium chloride (CIT/CPC), (2) 20% hydrochloric/citric acid mixture followed by 3% potassium lactate (CT/KL), (3) 20% hydrochloric/citric acid mixture followed by 10% trisodium phosphate (CIT/TSP), (4) 0.4% cetylpyridinium chloride followed by 3% potassium lactate (CPC/KL), (5) 0.4% cetylpyridinium chloride followed by 10% trisodium phosphate (CPC/TSP), (6) inoculated untreated control (IN) or (7) un inoculated untreated control (C). Each subsection was cut into 3 individual steaks (n=108) allowing 15 steaks per treatment per day of display. Steaks were sampled for EC, ST, coliforms (CO), and aerobic plate count (APC) analysis on d 1, 2, 3, 4, and 7 of display. The instrumental color characteristics (CIEL*a*b*) were measured using illuminant A/10* observer on the same days and hue angle and saturation index were calculated. All treatments except CIT/TSP treatment significantly reduced (P<0.05) EC and APC counts compared with INCON. The CIT/CT/CPC and CIT/KL treatments reduced (P<0.05) EC, CO, and APC counts by up to 2.5 log cfu/g. EC, CO, ST, and APC counts were reduced (P<0.05) from d 2 through d 4 of display. Furthermore, there was no difference among treatments for L*, a* and b* saturation index. On d 1, all treatments had similar (P<0.05) hue angle when compared with the control. However, on d 4, IN retained the reddest color (P<0.05); (hue angle) compared with all the treatments. The L* and saturation index remained the same on d 1 through d 4 of display, however a* and b* reduced with display time. Results suggest that treatment of the Biceps femoris muscles at the sub-primal level with allotted treatment combinations may enhance shelf-life initially, but become similar to the control by d 7 of display.

Keywords: Antimicrobials, Beef, Hydrochloric/citric acid

Evaluating whether trimming chilled beef during fabrication will control Escherichia coli O157:H7

B. A. Laster, K. B. Harris, A. N. Haneklaus*, L. M. Lucia, A. Castillo, J. W. Savell, Texas A&M University, College Station, United States

A current concern for the beef industry is Escherichia coli O157:H7 contamination of beef intended for non-intact products. Non-intact products include beef that has been enhanced by vacuum tumbling, mechanically tenderized by cubing, needle injected to incorporate a marinade, or subjected to a comminution process such as grinding, chopping, or mincing. Although all of these processes are not the same, pathogens may be introduced below the surface of these products. Fabrication often involves removing external carcass surfaces, which can be contaminated with E. coli O157:H7, to generate closely trimmed subprimals. Therefore, non-pathogenic surrogates for E. coli O157:H7 were used to evaluate the effectiveness of trimming external carcass surfaces during fabrication. Carcass sides (n=10 sides) were inoculated along the hide pattern opening before entering the blast chill cooler with a gelatin slurry containing a bacterial cocktail of 3 rifampicin-resistant, non-pathogenic E. coli Biotype 1 strains (mean concentration of the gelatin slurry following the addition of the cocktail was $7 \log_{10}$ cfu/ml). Initial inoculum levels on the carcass surface were found to be approximately $2 \log_{10}$ cfu/ml lower than the concentration of the gelatin slurry before application. Following a 48 h chill, sides were fabricated to produce 8 subprimals; ribeye, brisket, shoulder clod, chuck roll, short loin, top sirloin, inside round, and bottom round. Microbiological samples were taken from the original carcass fat surface area, initial lean surface area, trimmed fat surface area (where applicable), and trimmed lean surface area (where applicable). Similar trends were seen in before and after trimming effects for the lean and fat surfaces of each subprimal. In 6 of the 7 subprimals where there were direct comparisons between before and after trimming for fat, the after trimming fat surfaces had lower (P<0.05) counts of rif-resistant E. coli than did the before trimming surfaces (the bottom round did not respond this way). For the most part, trimming external fat surfaces to produce these closely trimmed subprimals resulted in significantly lower pathogens on the resultant surfaces than if no trimming had occurred. For all 8 subprimals, the before trimming lean surfaces had lower (P<0.05) counts of rif-resistant E. coli than did the before trimming fat surfaces, which further implies that significantly fewer pathogens will be on the initial lean surfaces when these subprimals are prepared than on the outside fat surfaces of the cut. However, in the limited direct comparisons of rif-resistant E. coli counts between the before and after trimming comparisons for the lean surfaces, in one subprimal they decreased (brisket), in one they increased (ribeye), and the remainder they did not differ between the 2 lean surfaces. At this point, there are minimal changes in the lean surfaces of subprimals compared with the opportunity to remove fat surfaces. Trimming external surfaces reduced levels of pathogens, but under normal fabrication processes, pathogens were still spread to newly exposed surfaces.

Keywords: Beef, Escherichia coli O157:H7, Decontamination

Salmonella, Campylobacter, and putative non-O157 shiga toxin-producing Escherichia coli (stec) prevalence in ground beef and whole muscle beef cuts at retail in the United States

J. L. Vipham*, M. F. Miller, G. H. Loneragan, A. Echeverry, J. C. Brooks, W. E. Chaney, M. M. Brashears, Texas Tech University, Lubbock, United States

Salmonella, Campylobacter, and non-O157 shiga toxin-producing Escherichia coli (STEC) cause considerable human illnesses each year,
and the vast majority of cases are food borne. Currently, very little is known about the burden of these pathogens in the US beef supply. The purpose of this study was to establish the prevalence of Campylobacter, Salmonella, and Non-O157 STEC in beef products collected from US retail markets. Sample collection occurred during the months of February through May 2010. Thirty-two American cities comprising 28 states were sampled in this study. Retail raw ground and whole muscle beef (n = 2,915) samples were purchased and examined for the presence of Salmonella. Samples were enriched in tryptic soy broth (TSB) and incubated for 24 h at 37 °C. Salmonella positives were confirmed using the AOAC approved BAX system rtPCR. Of the original samples purchased, 1,211 were randomly selected and tested for Campylobacter. Positive samples were confirmed through direct plating and latex agglutination. Samples were enriched using Bolton selective broth and incubated for 48 h at 42 °C. Enriched samples were grown on blood-free Campylobacter plates in required microaerophilic conditions. A sub-sample (n = 325) was enriched in TSB and glycerol (TSB + glyc) and frozen at −80 °C to be analyzed at a later date. Samples were screened for putative non-O157 STEC using rtPCR methods. Salmonella was detected in 0.65% of the total samples purchased. The prevalence for whole muscle cuts was 1.02%, and Salmonella was present in 0.54% of ground beef samples. Campylobacter was recovered from 9.3% of samples (n = 112), with a prevalence of 17.24% in whole muscle cuts and 7.35% in ground beef. Putative non-O157 STEC antigens were detected in 5.9% of samples. Whole muscle cuts had a prevalence of 4.11%, and ground beef sample prevalence was 0.99%. The most common serotypes detected in this study were O26 (3.8%), O145 (2.2%), O103 (1.3%), and O111 (0.98%).

A chi-squared analysis was conducted using the FREQ procedure of SAS. A greater percentage of O26 was observed (P = 0.01 and P = 0.04, respectively); however, no other comparisons between putative non-O157 STEC were significant (P = 0.05). Whole muscle cuts had a higher prevalence of Campylobacter compared with ground beef (P = 0.01); however, comparisons between whole muscle cuts and ground beef for the other 2 pathogens were not significant (P > 0.05). Creating pathogen baselines in US retail beef is imperative for targeting interventions for pathogen control. These data can be utilized for a more complete understanding of these pathogens and their impact on public health from the consumption of beef products.

Keywords: Putative non-O157 shiga toxin-producing E. coli, Salmonella, Campylobacter

In-plant thermal process validation for whole muscle jerky using SAGA 200 starter culture as pathogen surrogate

L. Christensen*, R. Delmore, California Polytechnic State University, San Luis Obispo, United States

Demonstrating adequate bacterial lethality of unique beef jerky thermal processes is necessary for meeting regulatory requirements but difficult to validate with great concern surrounding introducing pathogens in a plant setting. Use of starter culture as a pathogen surrogate provides an opportunity for processors to validate in-plant thermal processes without concerns of plant or product contamination. This in-plant experiment was conducted to establish the magnitude of bacterial lethality with 2 processor specific thermal processes (traditional processes with limitations on smokehouse humidity). A ≥5.0 log reduction must be achieved to approve the processes as appropriately lethal according to regulatory requirements. Two experiments were conducted using 2 different thermal processes. Process 1 - a low temperature thermal cycle with no humidity control. Process 2 - a high initial temperature reduced to low temperature for the majority of the thermal cycle with no humidity control. Strips of 2 styles of sliced beef top round were inoculated using SAGA 200 starter culture (n = 35). Samples (n = 5) were collected pre-inoculation, post-inoculation (dwell time 60 min), post-marination, mid-cycle thermal cycle and on finished dried product representing the top, middle and bottom of the cooking rack. Strips were stomached in PWD buffer and were plated on MRS agar to effectively recover lactic acid bacteria and establish bacterial counts. Initial counts on inoculated samples were sufficiently high — in the range of 7.8−7.9 log cfu/g. Total log reduction on jerky strips throughout the thermal processes was found to be <2.5 log cfu/g. These results suggest that further testing needs to be conducted with alternative thermal processes to achieve necessary lethality for regulatory requirements.

Keywords: Jerky, Validation, Surrogate

Effects of lactic acid on Salmonella levels on non-federally-inspected whole muscle beef steaks purchased in meat markets of Mexico

Today in many developing countries, food safety is a major concern. Specifically in Mexico, foodborne illnesses are the leading cause of death in small children. These cases occur due to contaminated products that are not processed under hygienic conditions from lack of information at all processing and consumer levels. Unlike the United States, not all beef slaughter and processing facilities require federal inspection creating an unsanitary, but preventable food production environment. Presently the only reputable inspection in Mexico, in a few facilities across the country, is “Tipo Inspeccion Federal” (TIF). The objective of this study was to evaluate the effectiveness of a 5% lactic acid dip and a 5% potassium lactate dip in whole muscle beef steaks purchased from Mexican retail markets on Salmonella. Non-federally inspected whole muscle beef steaks (approximately 100 g) were purchased from city markets, street vendors, and butcher shops across the cities of Cancun, Merida, Veracruz and Mexico City. Lactic acid samples were purchased in duplicate to serve as a control and treated in a 5% lactic acid dip solution. Samples were collected during the summer months of 2010 and 2011 from Cancun (n = 100), Merida (n = 153), and Veracruz (n = 268), duplicate included. Potassium lactate duplicate samples were also purchased as control, and treated in a 5% potassium lactate dip solution from cities of Cancun, Merida, Veracruz and Mexico City during fall (n = 98, n = 96, n = 100, n = 76, respectively, duplicate included), Winter (n = 100, n = 100, n = 94, n = 80, respectively, duplicated included) and Spring (each city n = 100, duplicate included). To date, Veracruz has been only been sampled during the Summer (N = 100, duplicated included). The presence of Salmonella was confirmed by the use of the Dupont Qualicon BAX® system. All data was analyzed with Statistical Analysis System (SAS) 9.1.3 softwares proc FREQ procedure. Salmonella prevalence in control samples ranged from 25.37% to 75.32% (Cancun 46.02%; Merida, 75.32%; and Veracruz, 25.37%). However, there was a percent reduction in Salmonella after lactic acid had been applied (Cancun, 10.00%; Merida, 71.42%; and Veracruz, 14.92%). Thus far, the control samples for the potassium lactate dip solution from cities of Cancun, Merida, Veracruz and Mexico City during fall (n = 98, n = 96, n = 100, n = 76, respectively, duplicate included), Winter (n = 100, n = 100, n = 94, n = 80, respectively, duplicated included) and Spring (each city n = 100, duplicate included). To date, Veracruz has been only been sampled during the Summer (N = 100, duplicated included). The presence of Salmonella was confirmed by the use of the Dupont Qualicon BAX® system. All data was analyzed with Statistical Analysis System (SAS) 9.1.3 softwares proc FREQ procedure. Salmonella prevalence in control samples ranged from 25.37% to 75.32% (Cancun 46.02%; Merida, 75.32%; and Veracruz, 25.37%). However, there was a percent reduction in Salmonella after lactic acid had been applied (Cancun, 10.00%; Merida, 71.42%; and Veracruz, 14.92%). Thus far, the control samples for the potassium lactate dip solution from cities of Cancun, Merida, Veracruz and Mexico City during fall (n = 98, n = 96, n = 100, n = 76, respectively, duplicate included), Winter (n = 100, n = 100, n = 94, n = 80, respectively, duplicated included) and Spring (each city n = 100, duplicate included). To date, Veracruz has been only been sampled during the Summer (N = 100, duplicated included).
12.18% upon potassium lactate treatment. The current study indicates that the application of either lactic acid or potassium lactate dip reduces levels of Salmonella. Therefore, implementing a type of lactic acid at a 5% level could reduce food-borne illness’ in whole muscle beef cuts from non-inspected beef.

Keywords: Beef food safety, Salmonella, Mexico

Influence of lactic acid spray applied in a cold environment and vacuum packaged storage on the presence of Escherichia coli O157: H7 on beef strip loins

This study investigated the survivability of *Escherichia coli* O157: H7 on beef strip loins treated with lactic acid spray (5%; LA) before management under simulated industry conditions. A common method to improve beef palatability is through mechanical tenderization. In addition to improving palatability, mechanical tenderization introduces the risk of translocation of pathogenic bacteria into the interior of beef cuts. Consequently, foodborne illnesses have been associated with the consumption of non-intact beef products. Therefore, reducing the presence of *E. coli* O157:H7 on beef strip loins before mechanical tenderization is imperative. Beef strip loins (n=40) were inoculated with high (10^5 log cfu/cm²) or low (10^3 log cfu/cm²) amounts of *E. coli* O157:H7, treated [5% LA or control (CON)], vacuum packaged, and stored for 21 d (0 to 4 °C). To assess attachment and reduction of *E. coli* O157:H7 due to treatment and storage, microbial samples were taken from subprimals 15 min post-inoculation, approximately 5 min after treatment (LA or CON), and after 21 d of vacuum packaged dark storage. Surface swabs (50 cm²) were enumerated by plating on MacConkeys agar with TSA overlay. Results indicated that *E. coli* O157:H7 levels were reduced (P<0.05) on lean and fat surfaces of high inoculated subprimals immediately after LA application 2.0 and 2.6 log cfu/cm², respectively. *E. coli* O157:H7 levels were also reduced (P<0.05) on lean and fat surfaces of low inoculated subprimals immediately after LA application 1.0 and 0.7 log cfu/cm², respectively. After 21 d of vacuum packaged storage, LA was shown to have no effect (P>0.05) on the total *E. coli* O157:H7 counts on lean surfaces of high inoculated subprimals; however, there was a 1.0 log cfu/cm² reduction (P<0.05) on fat surfaces. While a 0.7 to 2.6 log cfu/cm² reduction (P>0.05) in the presence of *E. coli* O157:H7 was observed on the subprimal surface after 21 d of storage, no LA treatment effect was noted for either the lean or fat surfaces of low inoculated subprimals (P>0.05). These data suggest vacuum packaged storage for 21 d is effective in reducing the presence of *E. coli* O157:H7 on the surface of inoculated beef subprimals.

Keywords: Beef, *E. coli* O157:H7, Storage

Validation of lactic acid and ASC Interventions on the reduction of Escherichia coli biotype I, coliforms and total aerobic bacteria on beef carcasses processed at a commercial U.S. slaughter facility

A. Pond*, M. F. Miller, T. Jackson, E. Randazo, M. M. Brashears, Texas Tech University, Lubbock, United States

Based on previously published studies, lactic acid and ASC can reduce *Escherichia coli* O157 and Salmonella in beef products. A comparison of the 2 interventions was conducted on carcasses in a commercial beef processing facility as established by the Code of Federal Regulations (CFR, Title 9, § 417.4 (a) (1)) to verify the validity of these interventions in controlling hazards. The purpose of this project was to validate, on site, the use of lactic acid intervention compared with ASC intervention on chilled beef carcasses. Chilled carcasses were randomly sampled, using aseptic techniques, before/after lactic application (4.2%) and ASC application at 3 time points during the day, for a total of 2 d. A total of 60 samples (30 before and 30 after) per day were collected during the course of the processing day. All sampling was conducted by in-plant laboratory technicians at the facility and used the N60 sampling method. At the end of the processing day, samples were shipped in cold conditions to the Food Microbiology Laboratory at Texas Tech University for microbiological analysis. *E. coli*, coliforms and APC were enumerated for each sample. Microbial counts were transformed into log cfu per cm² allowing control and stabilization of statistical variance and fulfillment of the requirements for normality before the analysis. Both lactic acid and ASC interventions resulted in significant (P<0.05) quantifiable reductions in *E. coli* Biotype I, Coliforms and total aerobic plate counts. The total APC reduction for lactic acid was 2.5 log cfu/cm² and 2.87 log cfu/cm² for ASC. Coliform reduction for lactic acid resulted in a 2.23 log cfu/cm² and a 2.71 log cfu/cm² reduction for ASC. The generic *E. coli* reduction for lactic acid was 2.65 log cfu/cm² and 3.46 log cfu/cm² reduction for ASC. Lactic acid and ASC interventions (4.2%) in a commercial processing plant are effective in reducing total microorganisms on beef carcasses as observed in this study. This type of validation is useful for processors to comply with USDA-FSIS regulations and to support HACCP plans and to protect public health.

Keywords: Food safety, Lactic acid, ASC

Salmonella and Ecoli O157:H7 prevalence on beef carcasses in a non-TIF harvest plant in the Cuautla, Mexican

A. Pond*, M. F. Miller, A. Echeverry, G. Loneragan, M. M. Brashears, Texas Tech University, Lubbock, United States

Non-TIF (Federal Inspection Type) regulated beef processing plants in Mexico are a major concern for this country and especially its young population, because foodborne illness is the number one cause of death for children ages 1–4. Non-TIF plants provide product to central markets and to vulnerable populations. To determine the prevalence of *Salmonella* and *E. coli* O157:H7 on beef carcasses from a non-TIF processing plant in Cuautla, Mexico. The prevalence of *Salmonella* on carcasses during three areas of the slaughter process was determined. Swab samples were taken from three areas of the slaughter process hide, Pre-Evisceration and Post-Evisceration. Samples were collected in each of two trips to Mexico. Sterile sponges pre-hydrated with buffered peptone water were used to collect a composite sample from the fore shank and midline area of each animal. Samples were transported to Texas Tech University under cold conditions for microbiological analysis within 2 days after collection. *Salmonella* and *E. coli* O157:H7 presence was confirmed using the Dupont Qualicon BAX system. No *E. coli* O157:H7 was detected in any of the samples. Overall, the *Salmonella* prevalence was 42% positive for all hide samples taken on both occasions. At pre-evisceration, 53% of the carcasses were positive for *Salmonella* in September and 31% positive. Determining the baseline in non-TIF regulated processing plants will contribute to the understanding and to pinpoint locations inside the plant where improvements are needed in both food sanitation, training and dressing procedures, and where to implement interventions thus, helping to improve the quality and safety of meat products sold to Mexican consumers.

Keywords: Food safety, Mexico, Salmonella
Tools to respond to the top 10 myths regarding the meat and poultry industry
B. Booren*, T. Super, J. Riley, American Meat Institute, Washington, DC, United States

Negative news coverage and the popularity of The Omnivore’s Dilemma, Fast Food Nation, and Food, Inc. are giving profile to myths about food production that are not based on fact. It is important to understand the degree to which these myths are taking hold among Americans and it is essential to target communications efforts around the myths that are most strongly held. AMI retained Harris Interactive to conduct an on-line survey of 2000 Americans. Respondents were asked to score myths on a scale of 1–100 (1 being least favorable; 100 being most favorable), in terms of the degree to which they agreed or disagreed. “Anti” industry respondents ranked the meat industry below 30. The mean favorability score for the meat industry was 48.7, which was higher than automotive (47.4), pharmaceutical (42.3), banking (40.7) and oil and natural gas (39.5). Those who are pro-industry tend to be male, Republican, conservative, married and meat consumers. Those who are “anti” industry are most likely to be female, liberal, higher educated and on some type of vegetarian/non-meat diet. A majority (63%) say they have not heard anything about the production of meat or poultry in the last 3 mo. However, those who reported hearing something said the coverage was mostly negative (77%). Most adults (78%) know that USDA regulates the meat and poultry industry, but few were confident in their regulatory abilities. Forty-seven percent said there is too little oversight by USDA while 3% said there was just the right amount. Adults are slightly more confident in the safety of meat and poultry today than 25 or 50 years ago, but divided on whether it’s safer than 10 years ago. The survey overall showed that Americans, unaided, continue to focus on price quality, and freshness when making purchases. However, when probed, they do express concern about several issues. The top myths were identified: hormone use in meat and poultry production; eating too much red meat can increase heart disease risk; Americans today are eating more meat and poultry than recommended; antibiotic use in livestock production is a concern and use is increasing; most sodium nitrite comes from meat products; inspectors only visit meat and poultry plants occasionally and that lack of federal oversight makes livestock abuse common. A multiple media curriculum was developed based on the identified myths: video messages with scientific experts; Web site that debunks top myths; provides facts, and expert resources; a companion Facebook page “Meat MythCrushers” for a more general audience and to respond to day-to-day issues; youth-oriented Facebook page “The Meat Locker”; print piece to be sent to policymakers, elected officials and key reporters; a pocket guide; print MAT releases; and presentations for use in K-12 and civic and business organizations. It is essential to target communications efforts around the myths that are most strongly held by Americans and to focus on correcting misperceptions and avoid raising issues where there is not strong concern or awareness. We must work hard not just to encourage consumption, but to also give consumers permission to feel confident in meat and poultry when they are consuming it. This can help potential erosion of consumption and help avoid public policy initiatives that are based on lack of education, science, and information.

Keywords: Consumer, Myths, Education

Food defense begins at the farm
C. A. Cirst, J. B. Williams*, A. F. Hood, Mississippi State University, MS, United States

The objective of this research and subsequent training sessions was to promote awareness and educate farmers and food manufac-

The Pigsaw Puzzle: An interactive approach to introduce the concept of carcass value in market animals
M. M. Miller, T. D. Pringle*, The University of Georgia, Athens, United States

Carcass value in market animals is a critical concept because it influences all aspects of food animal production systems from genetics to nutrition to the management practices employed. Although important, the concept of value in market animals can be a difficult one to convey to students that have limited exposure to and understanding of animal agriculture. Many of the students in Animal Science and Food Science programs today come from metropolitan areas and thus have little if any hands-on experience with food animals much less with meat products. Additionally, many of these students have negative connotations about meat because of the misinformation that exists in the media and on the internet. The Pigsaw Puzzle has been used as a means of introducing students in secondary and post-secondary institutions to carcass value, anatomy, muscle form and function, adipose and skeletal
development, as well as meat quality and consumer attributes of meat. The Pigsaw Puzzle consists of a side of pork cut into primals and subprimals that the students reassemble into a side. The level of fabrication dictates the difficulty of the Pigsaw Puzzle and can be varied to meet the knowledge of the audience and the available time. Participation in the Pigsaw Puzzle requires students to get out of their comfort zone and come together as a team to assemble the pork side. The first principle that the students learn is food safety since participants are required to wash their hands and don frocks and hairnets. While students are attiring, time is available to further discuss meat inspection and the food safety principles utilized in the meats industry. Next students begin the process of identifying cuts and orienting them. This provides a good opportunity for the demonstration leader to provide some assistance and to begin building a level of trust with the participants that leads to increased openness and interaction. An intact side of pork or a picture can be used to provide the students with information they can use to achieve success. Once the puzzle is completed, the leader can delve into topics like value differentiation among the primals and subprimals; identification of retail cuts that originate from various cuts; the relationship between biological function and meat tenderness; factors that influence meat quality; diet-health issues associated with meat consumption; and others. Students are also encouraged to ask questions which lead to further discussion. The Pigsaw Puzzle is mobile and generally can be transported in a cooler for demonstrations outside of a climate-controlled environment. Participants have generally shown a greater understanding of carcass value in livestock following completion of the Pigsaw Puzzle. Newly acquired knowledge can be assessed by pre- and post-questionnaires, which may include the use of electronic teaching devices like clickers. Overall, the Pigsaw Puzzle has been utilized at the University of Georgia to introduce students with varying levels of agricultural knowledge to the principle of carcass value and to increase their knowledge and interest in meat science through a hands-on, interactive demonstration.

Keywords: Teaching, Carcass value, Pork

Advocating agriculture through the BBQ Boot Camp model

A. G. Germolus*, E. P. Berg, A. N. Lepper, P. T. Berg, R. J. Maddock, D. S. Buchanan, D. J. Newman, North Dakota State University, Fargo, United States

A large portion of the US population is over 3 generations removed from agriculture. The BBQ Boot Camp program was designed to educate consumers about agriculture production and sustainability, while teaching outdoor cooking methods with meat as the main focus. The BBQ Boot Camp program provides consumers with the opportunity to ask questions about where their food comes from. The format of the program is to provide consumers knowledge based on science. Through the BBQ Boot Camp model, consumer knowledge was analyzed using a pre- and post-program test then a second post-test submitted 3 or 6 mo later. The test questions focused on cooking, agriculture practices, and food safety issues. The tests allowed us to establish a consumer base of knowledge to determine the information needs meat-consuming North Dakotans. Data was collected from 17 cities across the state of North Dakota in the summer of 2009 and 2010 (n=1585 total number observations). Data were analyzed using PROC GLM and PROC MEANS with main effects of City, Sex, and Age and interactions of City*Age, City*Sex, and Age*Sex. Consumer demographics included male and female correspondents in 5 different age groups. Male consumers ages 18–29 (n=89), 30–39 (n=130), 40–49 (n=156), 50–59 (n=262) and >60 (n=206). Then female consumers ages 18–29 (n=65), 30–39 (n=76), 40–49 (n=156), 50–59 (n=239), and >60 (n=127). Through the data we were able to see influential factors affecting consumer purchasing decisions. When asked which factors are more important when making food purchasing decisions 63% of males and 79% of females said price was most important, 83% being young consumers between 18 and 29 years of age. Food safety was also a key factor in consumer purchasing decisions according to males and females with a majority of the concern coming from correspondents >60 years of age at 56%. Program attendees were also asked how often they use a thermometer during cooking, only 10.8% across all age groups and sex responded in the pre-test with that they use a thermometer every time. These percentages increase 9 fold after conclusion of the program to 90.8%, respectively. Consumers were also asked to rate on a 5 point scale, (1 = not useful at all; 5 = very useful) the usefulness of tools educators can use to communicate with them about food production. Out of the five categories (mass media, web site information, personal communication, social networking, and in-person events at a local level) consumers ranked in-person communication as the most important form of communication with an average score of 4.3 out of 5 across sex and all ages. In-person communication increased linearly from younger respondents to older. Respondents choose mass media as the second most important form of communication with an average ranking of 3.6 out of 5. It is important to note that this data only represents people from the state of North Dakota and surrounding areas. Although small when considering the population of the United States, the information that has been collected has shown there are areas of food communication that need improvement.

Keywords: Consumer, Barbeque, Education

Biochemical characterization of white-tailed deer myoglobin

P. Joseph*a, S. P. Sumanb, S. Li, M. Fontainec, L. Steinkeb, aUniversity of Kentucky, Lexington, United States, bUniversity of Nebraska Medical Center, Omaha, United States

Game meats are gaining increased consumer acceptance due to low-fat and low-cholesterol contents. White-tailed deer (Odocoileus virginianus) is a major game meat species in North America. Although the primary structure of myoglobin (Mb) from several meat-producing mammals has been characterized, the amino acid sequence of white-tailed deer Mb is yet to be determined. Therefore, our objective was to determine the primary structure of white-tailed deer Mb. White-tailed deer Mb was isolated from cardiac muscles utilizing ammonium sulfate precipitation and gel-filtration chromatography. Purified white-tailed deer Mb was subjected to automated Edman degradation, which revealed the identity of 50 residues from the amino terminus. In comparison with the first 5 amino acids of other well-characterized ruminant myoglobins, white-tailed deer Mb shared 100% homology with red deer, beef, and sheep, whereas it demonstrated 98% similarity with goat and water-buffalo.

Keywords: White-tailed deer, Primary structure, Myoglobin

Effects of feeding a single or sequence of β-adrenergic agonists to cull cows on meat quality and muscle biochemical properties

M. J. Weber*, M. E. Dikeman, J. A. Unruh, J. R. Jaeger, L. Murray, Kansas State University, Manhattan, United States

The objectives of this study were to explore the effects of feeding cull cows a single or sequence of β-adrenergic agonists (β-AA) on meat quality and muscle biochemical properties. Sixty cull cows were implanted with Revalor-200 and assigned to 1 of 4 treatments: C – fed
a concentrate ration; RH = supplemented with ractopamine-HCl (RH) for 25 d before harvest; ZH = supplemented with zilpaterol-HCl (ZH) for 20 d before a 3 d withdrawal before harvest; RH + ZH = supplemented with RH for 25 d followed by ZH for 20 d before a 3 d withdrawal before harvest. All cows were fed a concentrate ration for 74 d. There were 3 replicate pens with 5 cows per pen for each treatment. Longissimus muscle (LM) biopsies were collected on d 24, 51, and at harvest from a subsample of 3 cows per pen. Steaks from the 6–7th rib section of the LM were used for desmin, collagen, and Warner Bratzler shear force (WBSF) measurements. The 12th rib section of the LM was enhanced with a 0.1 M calcium lactate solution at 7 d postmortem, aged for an additional 7 d, and evaluated for WBSF and sensory traits. Psosas major steaks were evaluated for WBSF and sensory traits, and infraspinatus steaks were evaluated for WBSF. The remainder of the shoulder clod was fine ground, packaged in PVC overwrap, and used for shelf life evaluation. Few differences existed among treatments for carcass traits; however, ZH supplementation increased LM area. The abundance of β₂-adrenergic receptor mRNA statistically increased (P<0.05) in the last 23 d of feeding for the RH treatment and numerically increased (P<0.05) for ZH cows. For all cows, abundance of Type Ila myosin heavy chain (MHC) mRNA decreased (P<0.05) after 24 d of feeding, and abundance of MHC-Ibx mRNA increased (P<0.05) for RH and ZH treatments the last 23 d of feeding. Psosas major steaks from the RH + ZH treatment were rated as more tender (P<0.05) than steaks from all other treatments. Infraspinatus steaks from cows supplemented with β-AA had more tender (P<0.05) WBSF values than controls. Longissimus samples from ZH supplemented cows had higher (P<0.05) WBSF values (were tougher) and less (P<0.0001) degraded desmin at 10 and 21 d postmortem compared with RH and C treatments. Percentage of soluble collagen was increased (P<0.05) by ZH supplementation. Enhancement of the LM with a 0.1 M calcium lactate solution alleviated differences in WBSF values among β-AA supplemented and control cows. No differences were observed in ground beef color stability among treatments. Even though there were few differences in carcass characteristics, muscle biochemical data indicated that β-AA elicited a cellular response. Effects of β-AA on sensory characteristics were muscle-specific with positive effects on the psosas major and infraspinatus muscles and negative effects on the LM. However, LM toughness from β-AA supplementation can be alleviated by calcium lactate enhancement.

Keywords: Cull cows, β-adrenergic agonists, Meat quality

Lipid oxidation-induced oxidation in ratite myoglobins

M. N. Nair a,b, P. Joseph a, S. Li a, P. S. Girish b, C. M. Beach a, S. P. Suman a,b

aUniversity of Kentucky, Lexington, United States, bNational Research Centre on Meat, Hyderabad, India

Emu and ostrich are ratites gaining increasing popularity as sources of low-fat meats. Lipid oxidation generates reactive secondary products such as 4-hydroxynonenal (HNE), which compromises myoglobin redox stability and meat color. Although previous research characterized the molecular basis of lipid oxidation-induced oxidation in livestock myoglobins, the effects of lipid oxidation on ratite myoglobins has not been investigated. Therefore, the objective of this study was to evaluate lipid oxidation-induced oxidation in ratite myoglobins, in comparison with beef myoglobin, using HNE as the model aldehyde. Emu, ostrich, and beef myoglobins were purified, and oxyhemoglobin was prepared and incubated with HNE (0.15 mM myoglobin + 1.0 mM HNE) at pH 7.4 and 37 °C for 6 h (physiological condition). Controls consisted of oxyhemoglobin plus a volume of ethanol used to deliver HNE. Absorbance spectra was recorded every 1 h, and percentage metmyoglobin formation was calculated. Percentage metmyoglobin formation increased (P<0.05) over time in all the 3 species, and HNE accelerated (P<0.05) oxidation of emu, ostrich, and beef oxyhemoglobins. HNE-induced metmyoglobin formation was greater (P<0.05) in ostrich oxyhemoglobin than in emu and beef oxyhemoglobins indicating that lipid oxidation is more critical to meat color of ostrich meat than to beef and emu meat.

Keywords: Ratites, Myoglobin, Lipid oxidation

Effects of 4-hydroxy-2-nonenal on ultrastructure and function of beef mitochondria

R. Ramanathan a,b, R. A. Mancinib, S. P. Sumanc, M. E. Cantinob a

aUniversity of Connecticut, Storrs, bUniversity of Kentucky, Lexington, United States

Meat color is an important quality attribute that influences purchasing decisions. Discoloration results in an annual loss of $2 billion to the meat industry every year. Nevertheless, meat has inherent mechanisms that delay discoloration, including mitochondrial-mediated processes. More specifically, electron transport mediated metmyoglobin reduction (due to oxygen consumption) and reductase present in the outer membrane of mitochondria can limit discoloration associated with metmyoglobin. Approximately 50% of the mitochondrial membrane is unsaturated fatty acids, which can generate reactive secondary lipid oxidation products, including 4-hydroxy-2-nonenal (HNE). Although mitochondria have a major role in color stability through the regeneration of NADH and oxygen consumption, no research has assessed the effects of HNE on beef mitochondrial structure, function, and electron transport-mediated metmyoglobin reduction. The objectives were to assess the role of 4-hydroxy-2-nonenal in (1) mitochondrial oxygen consumption; (2) mitochondrial ultrastructure, and (3) mitochondria-mediated metmyoglobin reduction in vitro at pH 5.6 and 25 °C. Mitochondria and myoglobin were isolated from fresh bovine hearts (n=5) using differential centrifugation and gel filtration, respectively. Mitochondrial protein content was determined using the BCA assay. Oxygen consumption was assessed using a Clark electrode after the addition of succinate (8 mM) to mitochondria (2 mg/ml) pre-incubated with HNE (0.20 mM). Control samples received succinate after mitochondria were pre-incubated with ethanol at a volume equivalent to that used for delivering HNE. For assessing mitochondria-mediated metmyoglobin reduction, isolated mitochondria (2 mg/ml) and metmyoglobin (0.15 mM) were reacted with either succinate (8 mM) and HNE (0.20 mM) or succinate without HNE for 3 h. At specific time points, samples were removed, centrifuged, and the resulting supernatant was used to measure metmyoglobin reduction. Metmyoglobin reductase activity was determined using the change in absorbance at 580 nm after addition of NADH (cofactor). Ultrastructural changes in isolated mitochondria were assessed using transmission electron microscopy. Image analysis was used to quantify the area of mitochondria and to characterize mitochondrial changes in the electron microscopic study. HNE binding to mitochondrial membranes was estimated using fluorescent studies. HNE decreased (P<0.05) oxygen consumption compared with control samples without HNE. In addition, HNE decreased metmyoglobin reduction and reductase activity compared with control mitochondria without HNE (P<0.05). Image analysis showed decreased mitochondrial area, indicating that HNE influenced the ultrastructure of mitochondria compared with control samples. Binding studies in the current study suggest that HNE can bind with the mitochondrial membrane (P<0.05). The results from the current study suggest that HNE decreased the ability of mitochondria to consume oxygen and reduce metmyoglobin, both of which can alter postmortem meat color stability. The effect of HNE on meat color can be attributed to its
reactivity with proteins. In addition, in codominant binding between HNE and myoglobin, secondary lipid oxidation products may influence color stability by interacting with mitochondria.

Keywords: Metmyoglobin, Mitochondria, Lipid oxidation

Effects of supplemented high linoleic or linolenic oil in the diet on lipogenic enzyme gene expression in subcutaneous adipose tissue of sheep
S. H. Choi, S. B. Smith, H. G. Lee, S. S. Chang, K. H. Kim, M. K. Song, Texas A&M University, College Station, United States, Chungbuk National University, Cheongju, Chungbuk, South Korea, Pusan National University, Milyang, Gyeongnam, South Korea, National Institute of Animal Science, Rural Development Administration, Suwon, Gyeonggi, South Korea

A feeding and in vitro trial with 20 sheep (60 ± 6 kg) was conducted to investigate the effects of high linoleic (C18:2 N-6; corn oil) or α-linolenic oil (C18:3 n-3, perilla oil) with/sodium bicarbonate on lipogenic enzyme gene expression in 2-h incubated (with/without 100 μM of fatty acid mixture, stearic acid:oleic acid: linoleic acid = 1:1:1) subcutaneous adipose tissue of sheep. All the sheep were fed the diets consisting of roughage:concentrate ratio of 40:60 (DM basis). Corn oil or perilla oil was added to the concentrate at 7% of the total diet (DM basis) before feeding. Chopped alfalfa hay was fed as roughage. Sheep were fed the mixes diets twice (0800 and 1800 h) each day in an equal amount for 3 mo. Feeding 1.2 kg of diets (DM) closely met the daily maintenance requirement of sheep (NRC, 1985). We measured glucose–6-phosphate dehydrogenase (GPDH), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), lipoprotein lipase (LPL) and stearoyl CoA desaturase (SCD) gene expression from incubated subcutaneous adipose tissue of sheep. High C18:3 in feed caused less ACC and FAS gene expression than high C18:2 in diets (P < 0.0001). Fatty acid mixture in media depressed ACC (P < 0.0001), FAS (P < 0.0001) and SCD (P = 0.05) gene expression in incubated subcutaneous adipose tissues. The fatty acid mixture in ACC and FAS of corn oil-fed sheep than in perilla oil fed sheep (P < 0.05). We predict that over time, fatty acids from diet would depress lipogenesis.

Keywords: Linoleic acid, Linolenic acid, Lipogenic enzyme

Tocopherol concentrations in erythrocytes from turkeys and ducks and relative ability of the different avian erythrocytes to stimulate lipid oxidation
D. Perez, M. P. Richards, University of Wisconsin-Madison, Madison, United States

Lipid oxidation is a major cause of quality deterioration in muscle foods. Breast and thigh muscle from turkey is more prone to lipid oxidation compared with the respective muscles in duck. A decrease in oxidative stability in turkey muscle may be partly due to lower levels of tocopherol isomers in erythrocytes of turkeys compared with ducks. A low level of tocopherol should weakly protect the erythrocyte membrane from free-radical-mediated lipid oxidation. Free-radical-mediated lipid oxidation leads to release of hemoglobin oxidant from the erythrocyte. Hemoglobin content was reported to be greater than myoglobin content in breast and thigh muscle from bled broilers, which indicates substantial levels of erythrocytes in poultry muscle after slaughter. One objective of this work was to determine α and gamma isomer levels in turkey and duck erythrocytes. A second objective was to assess the ability of turkey and duck erythrocytes to promote lipid oxidation in washed muscle fibers. Blood was obtained from fasted ducks and turkey at market weights from commercial producers. Erythrocytes were prepared from whole blood by removing plasma and then washing the packed erythrocytes 3 times in 9 vol of 1 mM Tris (pH 8) containing 1.7% NaCl. Lipid was extracted from erythrocytes using a mixture of chloroform/methanol or initially homogenizing in methanol followed by addition of chloroform. Tocopherol isomers were determined using HPLC with fluorescence detection. Intact erythrocytes were added to washed turkey muscle (pH 5.6) using a hemoglobin concentration of 10 μmol/kg washed muscle. Lipid peroxides, TBARS and hexanal were used as indicators of lipid oxidation during up to 8 d of iced storage. Loss of redness was also followed during storage. Homogenizing erythrocytes initially in methanol and then adding chloroform produced better lipid extraction compared with homogenizing in a mixture of chloroform/methanol. Alpha tocopherol was significantly higher in ducks erythrocytes (P < 0.05) compared with turkey erythrocytes (9.3 ± 3.2 compared with 1.3 ± 0.7 μmol/ml packed erythrocytes). Gamma isomer levels were on average higher in the turkey erythrocytes (23.8 ± 13.3 compared with 16.2 ± 11.7 μmol/ml packed erythrocytes). Inducing hemolysis by osmotic shock accelerated erythrocyte-mediated lipid oxidation in washed muscle. In trial 1, intact duck erythrocytes promoted lipid oxidation in washed muscle significantly faster compared with intact turkey erythrocytes. However, EDTA anticoagulant was used for ducks and heparin anticoagulant in turkeys. The ability of EDTA to facilitate hemolysis in avian species has been reported. In trial 2, heparin was used in the collection of both duck and turkey blood. In trial 2, intact duck erythrocytes promoted lipid oxidation slightly but significantly faster than turkey erythrocytes. The similar ability of turkey and duck erythrocytes (in a common anticoagulant) to promote lipid oxidation may be explained by similar additive amounts of vitamin E isomers in both types of erythrocytes even though α tocopherol was 7-fold greater in duck erythrocytes. Thus, the high susceptibility of turkey muscle to lipid oxidation appeared associated with factors other than particularly labile erythrocytes.

Keywords: Vitamin E, Meat quality, Hemolysis

Effects of maternal nutrition on hind limb composition of bovine fetuses
D. L. Schubert, T. D. Jennings, K. R. Underwood, A. E. Wertz-Lutz, A. D. Weaver, South Dakota State University, Brookings, United States

Inadequate nutrition is often encountered by gestating cows due to decreased forage quantity and quality resulting from environmental conditions. Maternal nutrition during mid-gestation influences adipose tissue and skeletal muscle development in many species, yet research is limited in beef cattle. Therefore, the objective of this research was to determine the influence of maternal nutrition on bone, muscle, and adipose tissue development in bovine fetuses at 180 d of gestation. Twenty-two Angus crossbred heifers of similar genetic background were artificially inseminated to the same Angus bull. Heifers were randomly allotted into 3 different dietary treatments from d 85 to 180 of gestation. The dietary treatments provided 180% (HIGH; n = 7), 107% (INT; n = 7), and 88% (LOW; n = 8) of maintenance energy requirements for growing pregnant heifers. At d 180 of gestation, fetuses were removed by cesarean section and the semitendinosus (ST) muscle of the left hind leg was dissected. Samples were fixed in paraformaldehyde and stored in ethanol for determination of muscle fiber cross-sectional area and diameter. Fixed samples were embedded in paraffin and transverse sections, 10 μm thick, were cut and stained with hematoxylin and
eosis. A minimum of 300 muscle fibers were analyzed for each fetus to determine fiber area and diameter. The entire right hind limb was removed from each fetus above the hip joint, weighed, and frozen at −20 °C for analysis of intramuscular fat content of the ST and bone weight. Upon thawing, the ST was dissected from the hind limb along with the femur bone. Intramuscular fat content of the ST was determined using ether extract. All muscle tissue was removed from the femur, and the bone was boiled for 2.5 h in water. The proximal and distal epiphyses were removed, and bones were air-dried for 7 d, followed by oven drying for 72 h at 70 °C. Following the drying protocol, bone length and weight were determined. Histological analysis of fiber cross-sectional area and diameter revealed no differences (P = 0.64 and 0.56 respectively) between treatment groups indicating maternal nutritional status did not influence muscle development in the ST. Additionally, no differences were detected for femur length, femur weight or crude fat percentage of the ST (P = 0.81, 0.98 and 0.44 respectively). These results indicate that fetal hind limb composition at 180 d of gestation is not influenced by the degree of maternal nutrient manipulation imposed in this study.

Keywords: Beef, Fetal programming, Composition

Myostatin gene mutations C313Y and Q204X and how they affect beef quality in crossbred heifers
C. A. Schwartz*, W. L. Keller, A. N. Lepper, E. P. Berg, J. D. Magolski, R. J. Maddock, X. Sun, K. R. Maddock-Carlin, North Dakota State University, Fargo, United States

The objective of this study was to examine the effects of 2 myostatin gene mutations, C313Y and Q204X with C313Y, on beef quality. One hundred twenty-six crossbred (Angus × Piedmontese) heifers were weighed, randomly allotted to 1 of 16 pens, and fed for approximately 120 d on corn-based total mixed rations containing either no field pea, dry-rolled field pea included at 15% of diet DM, pea hulls fed at an equivalent portion to 15% whole peas in the ration, or pea chips fed at the equivalent portion to 15% whole peas in the ration. Heifers were fed in 16 identical pens with 4 pens (replicates) in each treatment. Feed intake was recorded daily, and heifers were weighed individually every 28 d to monitor performance during the feeding period. During finishing, samples were taken from the ear of each heifer and a genetic profile was determined by IGENITY. Due to crossbreeding, heifers were also evaluated for mutations in the myostatin gene, referred to as MUT0 (having no mutation), MUT1 (having a C313Y mutation, and MUT2 (having both C313Y and Q204X mutations). When heifers reached 14 to 16 mo of age (580 ± 43 kg), they were transported to a commercial slaughter facility. The longissimus thoracis (LT), semimembranosus (IR), biceps femoris (BR), and supraspinatus (MT) were sampled, vacuum sealed, and aged for 14 d at 4 °C. Carcass data were collected after a 48-h chill. Traits analyzed were live weight; hot carcass weight (HCW); 12th rib fat depth (BF); rib-eye area (REA); estimated kidney, pelvic, and heart fat (KPH); USDA yield grade (YG); and marbling score (MAR). Minolta colorimeter measurements were taken and meat tenderness was measured as Warner-Bratzler shear force (WBSF) at 14 d post-mortem. Data was analyzed using Proc Mixed in SAS with block and slaughter date in the model. Diet proved not significant and was removed from the model. The presence of the myostatin gene mutations had no effect on HCW or MAR. BF was significantly lower (P < 0.03) in heifers with MUT1 and MUT2 compared with MUT0. REA was significantly higher in those inheriting either MUT1 or MUT2 compared with MUT0 (94.06 ± 1.95 cm² and 92.83 ± 1.88 cm² vs. 77.67 ± 4.72 cm², respectively). MUT0 heifers had significantly higher KPH (P < 0.01) compared with those inheriting either mutation. Both MUT1 and MUT2 had significantly higher (P < 0.001) YG than MUT0 (2.63 ± 0.12 and 2.72 ± 0.12 vs. 3.93 ± 0.28, respectively). LT from MUT1 heifers were more tender (P = 0.02), as measured by WBSF, than those from either MUT2 or MUT0. The LT of MUT1 heifers tended to have a higher a* (27.22 ± 0.32 vs. 26.15 ± 0.30) compared with MUT2 (P = 0.06). LT from heifers inheriting MUT2 had significantly lower b* (7.18 ± 0.23 vs. 8.04 ± 0.25) compared with those from MUT1 (P = 0.04). The L* value of the IR was significantly lower (37.43 ± 0.27 vs. 39.04 ± 0.71) than that of MUT0 (P = 0.03). Our data suggest that the presence of MUT1 and MUT2 in heifers results in changes in Minolta color score values, WBSF, and several carcass traits when compared with MUT0. This study indicates a relationship between myostatin gene mutations (C313Y and C313Y with Q204X) and beef quality.

Keywords: Myostatin, Mutation, Beef quality