Proteomics of Meat Color

Surendranath P. Suman, Ph.D.
Assistant Professor
Animal and Food Sciences
Meat Color

• Influence consumers’ decisions
 – Sight sells!

• Meat discoloration = Sales loss
 – Annual sales loss $1 billion (Smith et al., 2000)

• Myoglobin chemistry
Interinfluential Interactions

- Antioxidants
- Lipid oxidation
- Ligands
- Sarcoplasmic proteome

Mancini & Hunt, 2005, Meat Science
Application of Proteomics

• “Why” and “How”
• Mb and biomolecules
 – Prooxidants
 – Antioxidants
• Muscle-specificity in beef color
 – Role of sarcoplasmic proteome
• Species differentiation
Lipid oxidation-induced meat discoloration

OxyMb MetMb

O₂

Reactive Lipid Oxidation Products

Vitamin E

TQ TQE₁

THQ TQE₂
Vitamin E and Meat Color

Lipid Oxidation ↓ Color Stability

• Species-specificity in meat color
• Myoglobin sequence affects color stability
4-Hydroxy-2-nonenal (HNE)

- α, β- Unsaturated Aldehyde
 - Oxidation of ω-6 PUFA
 - Alters protein functionality
 - Detected in fresh meats

- Adduction in Mb
 - Histidine (Alderton et al., 2003; Lee et al., 2003)
 - HIS 93 and 64
 - Heme stability

- Histidines in Mb
 - Beef = 13
 - Pork = 9
MetMb formation in beef and pork myoglobins incubated with HNE at pH 5.6, 4°C

- **Beef Mb**
- **Pork Mb**

The graph shows the percentage of MetMb formation over time for beef and pork myoglobins incubated with HNE at pH 5.6, 4°C. The data is presented at 0 h and 48 h, with error bars indicating variability.
Pork Mb + HNE at pH 5.6, 4°C, 72 h

Voyager Spec #1 => BC => NF0.7 => MC [BP = 16954.8, 20991]

16956.25 = Mb

17114.34 = Mb:1HNE (Mb+158)
Beef Mb + HNE at pH 5.6, 4°C, 72 h

Voyager Spec #1 => BC => NF0.7 => MC [BP = 16940.5, 36858]

- Mb:2HNE (Mb+314) at 17254.01
- Mb:1HNE (Mb+157) at 17097.45
- Mb at 16940.63

Mass (m/z) vs % Intensity graph.
HNE adduction sites in Pork Mb

Red: Adducted
Green: Unadducted
HNE adduction sites in Beef Mb

- HIS-152
- HIS-93
- HIS-88
- HIS-81
- HIS-36
- HIS-24
- HIS-119
PIC-labeling Quantitation

RT: 22.00 - 28.00

PIC-H*LAESHANK
Bovine Mb peptide 88-96

Base Peak
ms2 642.34

Base Peak
ms2 645.34

13C$_6$PIC-H*LAESHANK
Bovine Mb peptide 88-96
Kinetics of HNE adduction in Pork Mb

Single Phase Exponential Association

\[Y = Y_{\text{max}} \cdot (1 - \exp(-K \cdot X)) \]

Observed K value (min\(^{-1}\))

HIS-36

3.6 \times 10\(^{-4}\)
Kinetics of HNE adduction in Beef Mb

Single Phase Exponential Association

$$Y = Y_{\text{max}} \times (1-\exp(-K \times X))$$

Observed K values (min$^{-1}$)

- HIS-81: 7.4×10^{-3}
- HIS-88: 14.5×10^{-3}
Species-specific meat discoloration

• Beef Mb is more susceptible than pork Mb
 – HIS 93 adduction
 – Adduction near heme pocket

• Lipid oxidation is critical to beef color

Suman et al., 2007, Proteomics
Lactate-Mb Interactions

• Color stabilizer

• How does lactate stabilize meat color?
 – Direct interactions with Mb
 – Indirect interactions with enzymes

• Direct interactions with Mb (Giardina et al., 1996)
 – Adduct formation?

• Species-specificity (Tamburrini et al., 1999)
 – Modulated in horse and sperm whale Mb
 – Not in Emperor penguin Mb

• MALDI-TOF MS
OxyMb incubated with lactate

OMb control
Incubation: 0 h

OMb + lactate
Incubation: 0 h

OMb control
Incubation: 192 h

OMb + lactate
Incubation: 192 h

Mancini et al., 2010, Meat Science
Static Genome Vs. Dynamic Proteome
Muscle-specificity in Beef Color

• **Filet Mignon**
 – Psoas major (PM)
 – Tender and expensive
 – Color-labile

• **NY Strip Steak**
 – Longissimus lumborum (LL)
 – Tougher and less expensive
 – Color-stable

• Response to MAP
• Cooked color
MAP and muscle source affect raw a^* value

Packaging type

Mancini et al., 2009, Meat Science
Muscle source influences internal cooked color

Suman et al., 2009, Meat Science
Beef Muscle Profiling

- **Muscle specificity in color**

 \[(McKenna \textit{et al.}, 2005)\]

 - Lipid oxidation, Oxygen consumption
 - OxyMb oxidation, MetMb reduction

- **Sarcoplasmic proteome**

 - 30% of muscle proteins
 - Proteins and enzymes interact with Mb
 - Differential abundance in LL vs. PM
DIGE - Sarcoplasmic Proteome

Green = LL
Red = PM
Yellow = STD
Differential Abundance of Proteome

• Identify and quantify proteome
 – 2-DE, MS-MS, peptide mass fingerprinting

• Beef muscles: LL and PM
 – Seven carcasses (n = 7)
 – 24 h post-mortem; 2.54 cm steaks
 – Retail display (0, 5, and 9 days)
 – Proteome samples at 0 day

• Meat color attributes
 – L^* (darkness), a^* (redness), b^* (yellowness)
 – R630nm/580nm; Metmyoglobin Reducing Activity (MRA)

• Correlate with color attributes
 – Protein markers for meat quality

USDA Grant 2009-35503-05194
Redness (a^* value) and muscle source

![Graph showing the relationship between redness (a^* value) and muscle source over days. The graph compares two lines, one for LL and another for PM, showing a decrease in redness over time.](image-url)
R630/580 and muscle source

![Graph showing the change in R630/580 over days for LL and PM muscle sources.](Image)
MRA and muscle source
Proteome Analysis

- **2-Dimensional Electrophoresis**
 - pH 5-8, 17 cm IPG strips
 - Isoelectric focusing (First dimension)
 - 12% SDS-PAGE (Second dimension)
 - Staining and imaging

- **Gel analysis**
 - PDQUEST
 - Intensity difference = 1.5 fold or more

- **Tandem MS**

- **NCBI database**
pH 5-8; 17 cm; 12% gel
Differentially Abundant Proteins

Over-abundant in LL

<table>
<thead>
<tr>
<th>Spot #</th>
<th>Description</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2604</td>
<td>Pyruvate dehydrogenase (P <0.01)</td>
<td></td>
</tr>
<tr>
<td>5403/6404</td>
<td>Creatine kinase (M chain) (P <0.01)</td>
<td></td>
</tr>
<tr>
<td>0104</td>
<td>Peroxiredoxin-2 (P <0.01)</td>
<td></td>
</tr>
<tr>
<td>4201</td>
<td>Triose phosphate isomerase (P <0.01)</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>Phophohistidine phosphatase (P <0.01)</td>
<td></td>
</tr>
<tr>
<td>2702</td>
<td>Heat Shock Protein-70 KDa (P <0.01)</td>
<td></td>
</tr>
<tr>
<td>2201</td>
<td>Heat Shock Protein-27 KDa (P <0.01)</td>
<td></td>
</tr>
<tr>
<td>5204</td>
<td>Dihydropteridine reductase (P <0.01)</td>
<td></td>
</tr>
<tr>
<td>4202</td>
<td>Peptide methionine sulfoxide reductase (P <0.01)</td>
<td></td>
</tr>
<tr>
<td>3404</td>
<td>β-enolase (P <0.05)</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>Thioredoxin (P <0.05)</td>
<td></td>
</tr>
<tr>
<td>3402</td>
<td>Aldose reductase (P <0.05)</td>
<td></td>
</tr>
<tr>
<td>3702</td>
<td>Stress-induced phosphoprotein-1 (P <0.05)</td>
<td></td>
</tr>
</tbody>
</table>

Over-abundant in PM

<table>
<thead>
<tr>
<th>Spot #</th>
<th>Description</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3802</td>
<td>Serotransferin (P <0.01)</td>
<td></td>
</tr>
<tr>
<td>8803</td>
<td>Mitochondrial aconitase (P <0.05)</td>
<td></td>
</tr>
<tr>
<td>2103</td>
<td>Protein DJ (P <0.05)</td>
<td></td>
</tr>
</tbody>
</table>
Correlation with Color Traits

<table>
<thead>
<tr>
<th>Protein</th>
<th>Muscle</th>
<th>Trait</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldose reductase</td>
<td>LL</td>
<td>a^* value</td>
<td>+ 0.64</td>
</tr>
<tr>
<td>Creatine kinase</td>
<td>LL</td>
<td>a^* value</td>
<td>+ 0.72</td>
</tr>
<tr>
<td>β-enolase</td>
<td>LL</td>
<td>a^* value</td>
<td>+ 0.64</td>
</tr>
<tr>
<td>Pyruvate dehydrogenase</td>
<td>LL</td>
<td>a^* value</td>
<td>+ 0.65</td>
</tr>
<tr>
<td>Mitochondrial aconitase</td>
<td>PM</td>
<td>a^* value</td>
<td>– 0.59</td>
</tr>
<tr>
<td>Peroxiredoxin-2</td>
<td>LL</td>
<td>R630/580</td>
<td>+ 0.92</td>
</tr>
<tr>
<td>Stress-induced phosphoprotein-1</td>
<td>LL</td>
<td>R630/580</td>
<td>+ 0.75</td>
</tr>
<tr>
<td>Heat shock protein-27kDa</td>
<td>LL</td>
<td>R630/580</td>
<td>+ 0.87</td>
</tr>
<tr>
<td>Peptide methionine sulfoxide reductase</td>
<td>LL</td>
<td>R630/580</td>
<td>+ 0.88</td>
</tr>
<tr>
<td>Peptide methionine sulfoxide reductase</td>
<td>LL</td>
<td>MRA</td>
<td>+ 0.63</td>
</tr>
</tbody>
</table>

Poulson Joseph, 2011, PhD Dissertation, University of Kentucky
Protein Categories

• Antioxidant proteins
 – Peroxiredoxin-2, Thioredoxin
 – Dihydropteridine reductase
 – Peptide methionine sulfoxide reductase

• Chaperone proteins
 – Heat Shock Protein-27 kDa
 – Heat Shock Protein-70 kDa
 – Stress-induced phosphoprotein-1

• Energy metabolism enzymes
 – Creatine kinase, β-enolase
 – Aldose reductase, Triose phosphate reductase

• Binding proteins
 – Serotransferin
Implications in Beef Industry

- Processing strategies
 - Aging
 - Packaging
 - Antioxidants
 - Enhancement

- Dietary manipulation
 - Antioxidant status

- Breed differences
 - Genetic selection
 - Brahman Vs. European cattle
Meat Species Differentiation

- Accurate mass detection
- MS coupled with
 - Collision-induced dissociation

 (Ponce-Alquicira & Taylor, 2000)
 - Edman degradation
- Mb species-specific sequence
- Emerging species’ Mb
 - Bison *(Joseph et al., 2009)*
 - Goat *(Suman et al., 2009)*
 - Emu *(Suman et al., 2010)*
 - Turkey *(Joseph et al., 2011)*
Where we go now?

- 1 protein
- 2 species
- 2 muscles
Prospective Applications

- Proteome profile of beef muscles
 - Proteome maps
- Effect of processing
 - Aging, packaging
- Color defects in fresh meats
 - DFD, PSE
 - Dark cutters
- Color defects in cooked meats
 - Persistent pinking in turkey
 - Premature browning in beef
Acknowledgments

University of Kentucky
• Poulson Joseph
• Shuting Li
• Mahesh Nair
• Dr. Youling Xiong
• Dr. Gregg Rentfrow
• Dr. Carol Beach

University of Connecticut
• Dr. Cameron Faustman
• Dr. Richard Mancini
• Ranjith Ramanathan
• Murali Konda

AMSA Family

Funding
• USDA AFRI
• University of Kentucky
• Kentucky Beef Council
Thank You

Questions?